Fitting nonlinear regression models with correlated errors to individual pharmacodynamic data using SAS software

Abstract

Nonlinear regression is widely used in pharmacokinetic and pharmacodynamic modeling by applying nonlinear ordinary least squares. Although the assumption of independent errors is frequently not fulfilled, this has received scant attention in the pharmacokinetic literature. As in linear regression, leaving correlation of errors out of account leads to an underestimation of the standard deviations of parameter estimates. On the other hand, the use of models that accommodate correlated errors requires more care and more computation. This paper describes a method to fit log-normal functions to individual response curves containing correlated errors by means of statistical software for time series. A sample computer program is given in which the SAS/ETS procedure MODEL is used. In particular, the problem of finding appropriate starting values for nonlinear iterative algorithms is considered. A linear weighted least squares approach for initial parameter estimation is developed. The adequacy of the method is investigated by means of Monte Carlo simulations. Furthermore, the statistical properties of nonlinear least squares with and without accommodating correlated errors are compared. Time action profiles of a long-acting insulin preparation injected subcutaneously in humans are analyzed to illustrate the usefulness of the method proposed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. G. Boxenbaum, S. Riegelman, and R. M. Elashoff. Statistical estimations in pharmacokinetics.J. Pharmacokin. Biopharm. 2:123–148 (1984).

    Article  Google Scholar 

  2. 2.

    D. M. Giltinan and D. Ruppert. Fitting heteroscedastic regression models to individual pharmacokinetic data using standard statistical software.J. Pharmacokin. Biopharm. 17: 601–615 (1989).

    CAS  Article  Google Scholar 

  3. 3.

    S. L. Beal and L. B. Sheiner. Heteroscedastic nonlinear regression.Technometrics 30:327–338 (1988).

    Article  Google Scholar 

  4. 4.

    L. B. Sheiner and S. L. Beal. Parameter estimates from several least squares procedures: superiority of extended least squares.J. Pharmacokin. Biopharm. 13:185–201 (1985).

    CAS  Article  Google Scholar 

  5. 5.

    J. C. van Houwelingen. Use and abuse of variance models in regression.Biometrics 44:1073–1081 (1988).

    PubMed  Article  Google Scholar 

  6. 6.

    A. A. R. Starke, L. Heinemann, A. Hohmann, and M. Berger. The action profiles of human NPH insulin preparations.Diabetic Med. 6:239–244 (1988).

    Article  Google Scholar 

  7. 7.

    G. E. P. Box and G. M. Jenkins.Time Series Analysis. Forecasting and Control, Holden-Day, San Francisco, 1977.

    Google Scholar 

  8. 8.

    W. W. S. Wei.Time Series Analysis. Univariate and Multivariate Methods, AddisonWesley, Redwood City, CA, 1990.

    Google Scholar 

  9. 9.

    G. A. F. Seber and C. J. Wild.Nonlinear Regression, Wiley, New York, 1989, pp. 271–323.

    Google Scholar 

  10. 10.

    M. Weiss. Use of gamma distributed residenxe times in pharmacokinetics.Eur. J. Clin. Pharmacol. 25:695–702 (1983).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    M. E. Wise. Skew distributions in biomedicine including some with negative powers of time. In: G. P. Patilet al. (eds.),Statistical Distributions in Scientific Work, Vol. 2, Reidel, Dordrecht, 1975, pp. 241–262.

    Google Scholar 

  12. 12.

    M. E. Wise. Negative power functions of time in pharmacokinetics and their implications.J. Pharmacokin. Biopharm. 13:309–346 (1985).

    CAS  Article  Google Scholar 

  13. 13.

    R. Bender and L. Heinernann. Description of peaked curves by means of exponential functions. In: S. J. Pöppl, H.-G. Lipinski, and T. Mansky (eds.),Medizinische Informatik: Ein integrierender Teil arztunterstützender Technologien. Proc, 38. Jahrestagung der GMDS, MMV Medizin Verlag, München, 1994, pp. 482–485.

    Google Scholar 

  14. 14.

    SAS.SAS/STAT ® Guide for Personal Computers,Version 6 Edition. SAS Institute Inc., Cary, NC, 1987, pp. 675–712.

    Google Scholar 

  15. 15.

    SAS.SAS/ETS ® User's Guide,Version 6,First Edition, SAS Institute Inc., Cary, NC, 1988, pp. 315–397.

    Google Scholar 

  16. 16.

    J. L. Fresen and J. M. Juritz. A note on Foss's method of obtaining initial estimates for exponential curve fitting by numerical integration.Biometrics 42:821–827 (1986).

    Article  Google Scholar 

  17. 17.

    G. S. Klonicki. Using SAS/ETS® software for analysis of pharmacokinetic data.Observations 2:24–32 (1993).

    Google Scholar 

  18. 18.

    J. Neter, W. Wasserman, and M. H. Kutner.Applied Linear Regression Models, Irwin, Homewood, 1989, pp. 484–485.

    Google Scholar 

  19. 19.

    C. A. Glasbey. Correlated residuals in non-linear regression applied to growth data.Appl. Statist. 28:251–259 (1979).

    Article  Google Scholar 

  20. 20.

    T. Heise, L. Heinemann, J. Ampudia, A. Klepper, R. Bender, and A. A. R. Starke. Des(64,65)-Proinsulin-analogon: Dose-dependency of the time action profile of an intermediate acting insulin agonist.Diabetologia 36(Suppl. 1):A155 (1993).

    Google Scholar 

  21. 31.

    A. R. Gallant.Nonlinear Statistical Models, Wiley, New York, 1987, pp. 137–138.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ralf Bender.

Additional information

This work was supported by the Peter-Klöckner-Stiftung, Duisburg, Germany (grant to Professor M. Berger).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bender, R., Heinemann, L. Fitting nonlinear regression models with correlated errors to individual pharmacodynamic data using SAS software. Journal of Pharmacokinetics and Biopharmaceutics 23, 87–100 (1995). https://doi.org/10.1007/BF02353787

Download citation

Key words

  • nonlinear regression
  • pharmacodynamic data
  • log-normal curves
  • correlated errors
  • nonlinear least squares
  • starting values
  • simulation