Volumes of distribution and mean residence time of drugs with linear tissue distribution and binding and nonlinear protein binding

  • Haiyung Cheng
  • William R. Gillespie


Based on a generalized model, equations for calculating the mean residence time in the body at single dose (MRT) and at steady state (MRTss), apparent steady-state volume of distribution (\(\hat V_{ss}\)) and steady-state volume of distribution (Vss) are derived for a drug exhibiting nonlinear protein binding. Interrelationships between\(\hat V_{ss}\) andVss as well as betweenMRT andMRTss are also discussed and illustrated with simulated data. In addition, a method for estimating the central volume of distribution of the bound drug and the sum of the central volume of distribution of the unbound drug and the area under the first moment curve of distribution function for drugs with nonlinear protein binding is proposed and illustrated with both simulated and published data.

Key words

volumes of distribution mean residence time nonlinear protein binding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. H. Evans, A. S. Nies, and D. G. Shand. The disposition of propranolol III. Decreased half-life and volume of distribution of a result of plasma binding in man, monkey, dog and rat.J. Pharmacol. Exp. Ther. 180:114–122 (1973).Google Scholar
  2. 2.
    A. Yacobi and G. Levy. Comparative pharmacokinetics of coumarin anticoagulants XIV. Relationship between protein binding, distribution and elimination kinetics of warfarin in rats.J. Pharm. Sci. 64:1660–1664 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    J. R. Gillette. Factors affecting drug metabolism.Ann. N.Y. Acad. Sci. 179:43–66 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    G. R. Wilkinson and D. G. Shand. A physiologic approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:377–389 (1975).PubMedGoogle Scholar
  5. 5.
    J. G. Wagner. Simple model to explain effects of plasma protein binding and tissue binding on calculated volumes of distribution, apparent elimination rate constants and clearances.Eur. J. Clin. Pharmacol. 10:425–432 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    S. Øie and T. N. Tozer. Effect of altered plasma protein binding on apparent volume of distribution.J. Pharm. Sci. 68:1203–1205 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    W. J. Jusko and M. Gretch. Plasma and tissue protein binding of drugs in pharmacokinetics.Drug. Metab. Rev. 5:43–140 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    M. L. Rocci and W. J. Jusko. Dose-dependent protein binding and disposition of prednisolone in rabbits.J. Pharm. Sci. 70:1201–1204 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    W. J. Jusko and S. T. Chiang. Distribution volume related to body weight and protein binding.J. Pharm. Sci. 71:469–470 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    P. J. McNamara, M. Gibaldi, and K. Stoeckel. Volume of distribution terms for a drug (ceftriaxone) exhibiting concentration-dependent protein binding. I. Theoretical considerations.Eur. J. Clin. Pharmacol. 25:399–405 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Kruger-Thiemer, W. Diller, and P. Bunger. Pharmacokinetic models regarding protein binding of drugs.Antimicrob. Agents Chemother. 5:183–191 (1965).PubMedGoogle Scholar
  12. 12.
    B. K. Martin. Kinetics of elimination of drugs possessing high affinity for the plasma protein.Nature 207:959–960 (1965).PubMedCrossRefGoogle Scholar
  13. 13.
    J. J. Coffey, F. J. Bullock, and P. T. Schoenemann. Numerical solution of nonlinear pharmacokinetic equations: Effects of plasma protein binding on drug distribution and elimination.J. Pharm. Sci. 60:1623–1628 (1971).PubMedCrossRefGoogle Scholar
  14. 14.
    P. J. McNamara, G. Levy, and M. Gibaldi. Effect of plasma protein and tissue binding on the time course of drug concentration in plasma.J. Pharmacokin. Biopharm. 7:191–206 (1979).Google Scholar
  15. 15.
    J. G. Wagner.Biopharmaceutics and Relevent Pharmacokinetics, 1st ed., Drug Intelligence Publications, Hamilton, IL, 1971, pp. 302–317.Google Scholar
  16. 16.
    S. Øie, T. W. Guentert, and T. N. Tozer. Effect of saturable binding on the pharmacokinetics of drugs: A simulation.J. Pharm. Pharmacol. 32:471–477 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    W. R. Gillespie. Generalized pharmacokinetic modeling for drugs with nonlinear binding: I. Theoretical framework.J. Pharmacokin. Biopharm. 21:99–124 (1993).CrossRefGoogle Scholar
  18. 18.
    W. R. Gillespie and P. Veng-Pedersen. Theorems and implications of a model-independent elimination/distribution function decomposition of linear and some nonlinear drug dispositions. II. Clearance concepts applied to the evaluation of distribution kinetics.J. Pharmacokin. Biopharm. 13:441–451 (1985).CrossRefGoogle Scholar
  19. 19.
    M. Weiss. Residence time and accumulation of drugs in the body.Int. J. Clin. Pharmacol. Ther. Toxicol. 24:121–126 (1983).Google Scholar
  20. 20.
    J. H. Oppenheimer, H. L. Schwartz, and M. I. Surks. Determination of common parameters of iodothyronine metabolism and distribution in man by noncompartmental analysis.J. Clin. Endocrinol. Metab. 41:319–324 (1975).PubMedCrossRefGoogle Scholar
  21. 21.
    L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady-state volume of distribution.J. Pharm. Sci. 68:1071–1074 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Cheng and W. J. Jusko. Mean residence time concepts for pharmacokinetic systems with nonlinear drug elimination described by the Michaelis-Menten equation.Pharm. Res. 5:156–164 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    H. Cheng, W. R. Gillespie, and W. J. Jusko. Mean residence time concepts for nonlinear pharmacokinetic systems.Biopharm. Drug Dispos. 15:627–641 (1994).PubMedCrossRefGoogle Scholar
  24. 24.
    M. L. Rocci and W. J. Jusko. LAGRAN program for area and moments in pharmacokinetic analysis.Compt. Prog. Biomed. 16:203–216 (1983).CrossRefGoogle Scholar
  25. 25.
    P. J. McNamara, M. Gibaldi, and K. Stoeckel. Volume of distribution terms for a drug (ceftriaxone) exhibiting concentration-dependent protein binding. II. Physiological significance.Eur. J. Clin. Pharmacol. 25:407–412 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    P. Veng-Pedersen, H. Cheng, and W. J. Jusko. Regarding dose-independent pharmacokinetic parameters in nonlinear pharmacokinetics.J. Pharm. Sci. 80:608–612 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Haiyung Cheng
    • 1
  • William R. Gillespie
    • 2
  1. 1.Department of Drug MetabolismMerck Research LaboratoriesWest Point
  2. 2.Food and Drug AdministrationRockville

Personalised recommendations