Skip to main content
Log in

Pharmacokinetic considerations of regional administration and drug targeting: Influence of site of input in target tissue and flux of binding protein

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Huntet al. introduced the concept of the Drug Targeting Index (DTI) to quantify the gain associated with regional drug administration and targeting and showed that for the ideal case of all drug first reaching the targetDTI=1+CL s/(Q T(1−E T)) whereCL s is the total clearance of drug from the body (including the target tissue),Q T is the target blood flow andE T is the steady-state extraction ratio of the drug in the target. In the model they portrayed the tissue as a homogeneous organ. A more general pharmacokinetic model has been developed that takes into account the three anatomical spaces (vascular, interstitial, and intracellular) of the target organ or tissue and that, in addition to unbound drug permeating the vascular and cellular membranes, protein-bound drug can also flux between the vascular and interstitial spaces. Elimination of unbound drug can take place from the cellular and interstitial spaces. An important parameter influencing theDTI is shown to be the fraction of targeted dose that is eliminated there before it reaches the systemic circulation,f T. Equations have been developed showing the relationship betweenf T andE T and forDTI when drug is administered at the various sites within the tissue and under a variety of conditions. Only when drug is administered into the target arterial blood stream or when distribution of drug within the target tissue is perfusion rate-limited, doesf T=E T andDTI=1+CL s/(Q T·(1−E T)). Otherwise consideration needs to be given to the permeabilities of both the unbound and bound drug and site of target administration, interstitial or intracellular. Thenf T is greater thanE T andDTI is greater than that expected had perfusion-rate limited distribution prevailed. The maximum benefit inDTI is seen for a drug of low cellular permeability but high cellular intrinsic clearance administered intracellularly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Hunt, R. D. MacGregor, and R. A. Siegel. Engineering targetedin vivo drug delivery. I. The physiological and physiochemical principles governing opportunities and limitations.Pharm. Res. 3:333–344 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. S. Øie and J-D. Huang. Influence of administration route on drug delivery to a target organ.J. Pharm. Sci. 70:1344–1347 (1981).

    Article  PubMed  Google Scholar 

  3. R. L. Dedrick. Interspecies scaling of regional delivery.J. Pharm. Sci. 75:1047–1052 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. U. G. Eriksson and T. N. Tozer. Pharmacokinetic evaluation of regional drug delivery.Acta Pharm. Jugoslavia 37:331–344 (1987).

    CAS  Google Scholar 

  5. R. A. Siegel, R. D. MacGregor, and C. A. Hunt. Comparison and critique of two models of regional drug delivery.J. Pharmacokin. Biopharm. 19:365–372 (1991).

    Article  Google Scholar 

  6. H. Suzuki, D. Nakai, T. Seita, and Y. Sugiyama. Design of a drug delivery system for targeting based on pharmacokinetic considerations.Adv. Drug Delivery Rev. 19:335–357, 1996.

    Article  CAS  Google Scholar 

  7. V. J. Stella and A. S. Kearney. Pharmacokinetics of drug targeting: specific implications for targeting via prodrugs in drug targeting and delivery. InHandbook of Pharmacology, Vol. 100, Academic Press, San Diego, 1991, pp. 71–103.

    Google Scholar 

  8. M. Weiss. On pharmacokinetics in target tissues.Biopharm. Drug Dispos. 6:57–66 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. A. Aubree-Lecat, M-C. Duban, S. Demignot, M. Domurado, P. Fiurnie, and D. Domurado. Influence of barrier-crossing limitations on the amount of macromolecular drug taken up by its target.J. Pharmacokin. Biopharm. 21:75–98 (1993).

    Article  CAS  Google Scholar 

  10. T. Sakane, M. Nakatsu, A. Yamamoto, M. Hashida, H. Sezaki, S. Yamashita, and T. Nadai. Assessment of drug disposition in the perfused rat brain by statistical moment analysis.Pharm. Res. 8:683–689 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. K. Ohkouchi, H. Imoto, Y. Takakura, M. Hashida, and H. Sezaki. Disposition of anti-cancer drugs after bolus administration into a tissue-isolated tumour perfusion system.Cancer Res. 50:1640–1644 (1990).

    CAS  PubMed  Google Scholar 

  12. R. Atsumi, K. Endo, T. Kakutani, Y. Takakura, M. Hashida, and H. Sezaki. Disposition characteristics of mitomycin C-dextran conjugate in normal and tumour-bearing muscles of rabbits.Cancer Res. 47:5546–5551 (1987).

    CAS  PubMed  Google Scholar 

  13. K. Mihara, M. Mori, T. Hojo, Y. Takakura, H. Sezaki, and M. Hashida. Disposition characteristics of model macromolecules in the perfused rat kidney.Biol. Pharm. Bull. 16:158–162 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. E. Nara, M. Masegi, T. Hatono, and M. Hashida. Pharmacokinetic analysis of drug absorption from muscle based on a physiological diffusion model: effect of molecular size on absorption.Pharm. Res. 9:161–168 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. E. P. Sipos and H. Brem. New delivery systems for brain tumour therapy.Neurol. Clin. 13:813–825 (1995).

    CAS  PubMed  Google Scholar 

  16. M. F. Flessner and R. L. Dedrick. Monoclonal antibody delivery to intraperitoneal tumours in rats: effects of route of administration and intraperitoneal solution osmolality.Cancer Res. 54:4376–4384 (1994).

    CAS  PubMed  Google Scholar 

  17. S. G. Owen, H. W. Francis, and M. S. Robert. Disappearance kinetics of solutes from synovial fluid after intra-articular injection.Br. J. Clin. Pharmacol. 38:349–355 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. V. J. Stella and K. J. Himmelstein. Prodrugs and site-specific drugs delivery.J. Med. Chem. 23:1277–1282 (1980).

    Article  Google Scholar 

  19. F. A. Omar, H. Farag, and N. Bodor. Synthesis and evaluation of a redox chemical delivery system for brain-enhanced dopamine containing an activated carbonate-type ester.J. Drug Target. 2:309–316 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. N. Bodor. Designing safer ophthalmic drugs by soft drug approaches.J. Ocular Pharmacol. 10:3–15 (1994).

    Article  CAS  Google Scholar 

  21. M. E. Brewster, K. Raghavan, E. Pop, and N. Bodor. Enhanced delivery of ganciclovir to the brain through the use of redox targeting.Antimicrob. Agents Chemother. 38:817–823 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. S. W. Martin, A. J. Stevens, B. S. Brennan, M. L. Reis, L. A. Gifford, M. Rowland, and J. B. Houston. Regional drug delivery: Permeability characteristics of the rat 6-day-old air pouch model of inflammation.Pharm. Res. 12:1980–1986 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. L. W. Seymour. Passive tumour targeting of soluble macromolecules and drug conjugates.Crit. Rev. Ther. Drug. Carrier Syst. 9:135–187 (1992).

    CAS  PubMed  Google Scholar 

  24. C. Sung, R. J. Youle, and R. L. Dedrick: Pharmacokinetic analysis of immunotoxin uptake in solid tumours: role of plasma kinetics, capillary permeability and binding.Cancer Res. 50:7382–7292 (1990).

    CAS  PubMed  Google Scholar 

  25. Y. F. Huang, R. N. Upton, W. B. Runciman, and L. E. Mather. Insight into interstitial drug disposition: Lymph concentrations of lidocaine, procainamide and meperidine in the hindquaters of unanaesthetized and anaesthetized sheep.J. Pharmacol. Exp. Ther. 256:69–75 (1991).

    CAS  PubMed  Google Scholar 

  26. M. Nishikawa, A. Kamijo, T. Fujita, Y. Takakura, H. Sezaki, and M. Hashida. Synthesis and pharmacokinetics of new liver-specific carrier, glycosylated carboxymethyldextran and its application to drug targeting.Pharm. Res. 10:1253–1261 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. E. J. F. Franseen, F. Moolenaar, D. Dezeeuw, and D. K. F. Meijer. Drug targeting to the kidney with low molecular weight proteins.Adv. Drug Delivery Rev. 14:67–88 (1994).

    Article  Google Scholar 

  28. L. J. Nugent and R. K. Jain. Two-compartment model for plasma pharmacokinetics of individual vessels.J. Pharmacokin. Biopharm. 12:451–462 (1984).

    Article  CAS  Google Scholar 

  29. C-H. Chou, A. J. McLachlan, and M. Rowland. Membrane permeability and lipophilicity in the isolated perfused rat liver: 5-ethyl barbituric acid and other compounds.J. Pharmacol. Exp. Ther. 275:933–940 (1995).

    CAS  PubMed  Google Scholar 

  30. A. V. Boddy, L. J. Aarons, and K. Petrak. Steady state considerations using a three-compartment model.Pharm. Res. 6:367–372 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the LINK program in Selective Drug Delivery and Targeting, funded by the SERC/DTI/MRC and the Pharmaceutical Industry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowland, M., McLachlan, A. Pharmacokinetic considerations of regional administration and drug targeting: Influence of site of input in target tissue and flux of binding protein. Journal of Pharmacokinetics and Biopharmaceutics 24, 369–387 (1996). https://doi.org/10.1007/BF02353518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353518

Key Words

Navigation