Journal of Pharmacokinetics and Biopharmaceutics

, Volume 23, Issue 6, pp 531–549 | Cite as

A pharmacokinetic-pharmacodynamic model of tolerance to morphine analgesia during infusion in rats

  • Dainèle M. -C. Ouellet
  • Gary M. Pollack


A pharmacokinetic-pharmacodynamic (PK-PD) model was constructed to describe the kinetics of tolerance development to morphine-induced antinociception. Tail-flick latencies in response to hot water (50°C) were assessed in male Sprague-Dawley rats exposed to a 12-hr iv infusion of either morphine (1.4 to 3.0 mg/kg per hr) or saline. Morphine-induced antinociception, expressed as the percentage of maximum possible response (%MPR), peaked after 120 min of infusion and decreased thereafter despite sustained systemic morphine concentrations. Both the rate and extent of tolerance development increased with increasing concentrations; an overall residual effect of approximately 24% MPR was observed at the end of the infusion regardless of the steady-state morphine concentration. The kinetics of tolerance offset were examined in a separate experiment by assessing tail-flick latency 15 min after morphine iv bolus (2 mg/kg) in tolerant and control rats. Recovery of response neared completion 18.5 days after a 12-hr exposure to morphine (2.0 mg/kg per hr). A PK-PD model was constructed to account for the delay in onset of antinociceptive effect and tolerance development relative to the blood concentration-time profile. According to this model, both the extent and the rate of tolerance development were modulated by the kinetics of the drug in the central compartment. Accumulation of a hypothetical “inhibitor” acting either as a reverse agonist, a competitive or noncompetitive antagonist, or a partial agonist could potentially account for the loss of pharmacologic effect in the presence of an agonist. The rate of tolerance development predicted from the PK-PD model varied widely (28-fold) depending on the type of pharmacologic interaction selected to account for the loss of effect. Using the rate of tolerance offset to discriminate between the different models (t1/2 offset 5.4 days), onset and offset of tolerance was described accurately by postulating that the inhibitor behaves as a partial agonist with low intrinsic activity (5.5% MPR) and high binding affinity for the receptor (IC50 15.0 ng/ml).

Key Words

pharmacokinetic-pharmacodynamic model tolerance morphine antinociception analgesia opiates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. M. Cox. Drug tolerance and physical dependence. In W. B. Pratt and P. Taylor (eds.),Principles of Drug Action: The Basis of Pharmacology, 3rd ed., Churchill Livingstone, New York, 1990, pp. 639–690.Google Scholar
  2. 2.
    D. H. Overstreet and H. I. Yamamura. Minireview: Receptor alterations and drug tolerance.Life Sci. 25:1865–1878 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    K. M. Foley. The treatment of cancer pain.New Engl. J. Med. 313:84–95 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    C. S. Cleeland. The impact of pain on the patient with cancer.Cancer 54:2635–2641 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    H. S. Greenberg, J. Taren, W. D. Ensminger, and K. Doan. Benefit from and tolerance to continuous intrathecal infusion of morphine for intractable cancer pain.J. Neurosurg.57:360–364 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Säwe, J. O. Svensson, and A. Rane. morphine metabolism in cancer patients on increasing oral doses—no evidence for autoinduction or dose-dependence.Br. J. Clin. Pharmacol. 16:85–93 (1983).PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    R. K. Portenoy, D. E. Moulin, A. Rogers, C. E. Inturrisi, and K. M. Foley. IV infusion of opioids for cancer pain: Clinical review and guidelines for use.Cancer Treat. Rep. 70:575–581 (1986).PubMedGoogle Scholar
  8. 8.
    G. K. Gourlay, J. L. Plummer, D. A. Cherry, M. M. Onley, K. A. Parish, M. M. Wood, and M. J. Cousins. Comparison of intermittent bolus with continuous infusion of epidural morphine in the treatment of severe cancer pain.Pain 47:135–140 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Säwe, B. Dahlström, L. Paalzow, and A. Rane. Morphine kinetics in cancer patients.Clin. Pharmacol. Ther. 30:629–635 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Säwe. High-dose morphine and methadone in cancer patients: Clinical pharmacokinetic considerations of oral treatment.Clin. Pharmacokin. 11:87–106 (1986).CrossRefGoogle Scholar
  11. 11.
    H. Yoshimura, S. Îda, K. Oguri, and H. Tsukamoto. Biochemical basis for analgesic activity of morphine-6-glucuronide-1. Penetration of morphine-6-glucuronide in the brain of rats.Biochem. Pharmacol. 22:1423–1430 (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    G. W. Pasternak, R. J. Bodnar, J. A. Clark, and C. E. Inturrisi. Morphine-6-glucuronide, a potent mu agonist.Life Sci. 41:2845–2849 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Osborne, S. Joel, D. Trew, and M. Slevin. Analgesic activity of morphine-6-glucuronide.Lancet i 1:828 (1988).CrossRefGoogle Scholar
  14. 14.
    D. Paul, K. M. Standifer, C. E. Inturrisi, and G. W. Pasternak. Pharmacological characterization of morphine-6-glucuronide, a very potent morphine metabolite.J. Pharmacol. Exp. Ther. 251:477–483 (1989).PubMedGoogle Scholar
  15. 15.
    M. T. Smith, J. A. Watt, and T. Cramond. Morphine-3-glucuronide—a potent antagonist of morphine analgesia.Life Sci. 47:579–585 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    Q.-L. Gong, J. Hedner, R. Björkman, and T. Hedner. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat.Pain 48:249–255 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Ekblom, M. G»rdmark, and M. Hammarlund-Udenaes. Pharmacokinetics and pharmacodynamics of morphine-3-glucuronide in rats and its influence on the antinociceptive effect of morphine.Biopharm. Drug. Dispos. 14:1–11 (1993).PubMedCrossRefGoogle Scholar
  18. 18.
    C. W. Stevens and T. L. Yaksh. Time course characteristics of tolerance development to continuously infused antinociceptive agents in rat spinal cord.J. Pharmacol. Exp. Ther. 251:216–223 (1989).PubMedGoogle Scholar
  19. 19.
    B. Milne, F. Cervenko, K. Jhamandas, C. Loomis, and M. Sutak. Analgesia and tolerance to intrathecal morphine and norepinephrine infusion via implanted miniosmotic pumps in the rat.Pain 22:165–172 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    T. L. Yaksh, R. L. Kohl, and T. A. Rudy. Induction of tolerance and withdrawal in rats receiving morphine in the spinal subarachnoid space.Eur. J. Pharmacol. 42:275–284 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    I. Kissin, P. T. Brown, A. Robinson, and E. L. Bradley, Jr. Acute tolerance in morphine analgesia: Continuous infusion and single injection in rats.Anesthesiology 74:166–171 (1991).PubMedCrossRefGoogle Scholar
  22. 22.
    G. S. F. Ling, D. Paul, R. Simantov, and G. W. Pasternak. Differential development of acute tolerance to analgesia, respiratory depression, gastrointestinal transit and hormone release in a morphine infusion model.Life Sci 45:1627–1636 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Yamamoto, M. Ohno, and S. Ueki. A selective-opioid agonist, U-50,488H, blocks the development of tolerance to morphine analgesia in rats.Eur. J. Pharmacol. 156:173–176 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    K. A. Trujillo and H. Akil. Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801.Science 251:85–87 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    M. J. Chow, J. J. Ambre, T. I. Ruo, A. J. Atkinson, D. J. Bowsher, and M. W. Fischman. Kinetics of cocaine distribution, elimination, and chronotropic effects.Clin. Pharmacol. Ther. 38:318–324 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    M. M. Hammarlund, B. Odlind, and L. K. Paalzow. Acute tolerance to furosemide diuresis in humans. Pharmacokinetic-pharmacodynamic modeling.J. Pharmacol. Exp. Ther. 233:447–453 (1985).PubMedGoogle Scholar
  27. 27.
    P. D. Kroboth, R. B. Smith, and R. J. Erb. Tolerance to alprazolam after intravenous bolus and continuous infusion: Psychomotor and EEG effects.Clin. Pharmacol. Ther. 43:270–277 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    H. C. Porchet, N. L. Benowitz, and L. B. Sheiner. Pharmacodynamic model of tolerance: Application to nicotine.J. Pharmacol. Exp. Ther. 244:231–236 (1988)PubMedGoogle Scholar
  29. 29.
    Y. F. Cheng and L. K. Paalzow. A pharmacodynamic model to predict the time dependent adaptation of dopaminergic activity during constant concentrations of haloperidol.J. Pharm. Pharmacol. 42:566–571 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Ekblom, M. Hammarlund-Udenaes, and L. Paalzow. Modeling of tolerance development and rebound effect during different intravenous administrations of morphine to rats.J. Pharmacol. Exp. Ther. 266:244–252 (1993).PubMedGoogle Scholar
  31. 31.
    M. G»rdmark, M. Ekblom, R. Bouw, and M. Hammarlund-Udenaes. Quantification of effect delay and acute tolerance development to morphine in the rat.J. Pharmacol. Exp. Ther. 267:1061–1067 (1993).Google Scholar
  32. 32.
    K. Oguri N. Hanioka, and H. Yoshimura. Species differences in metabolism of codeine: Urinary excretion of codeine glucuronide, morphine-3-glucuronide and morphine-6-glucuronide in mice, rats, guinea pigs and rabbits.Xenobiotica 20:683–688 (1990).PubMedCrossRefGoogle Scholar
  33. 33.
    C. K. Kuo, N. Hanioka, Y. Hoshikawa, K. Oguri, and H. Yoshimura. Species difference of site-selective glucuronidation of morphine.J. Pharmacobiodyn. 14:187–193 (1991).PubMedCrossRefGoogle Scholar
  34. 34.
    A. J. Lawrence, A. Michalkiewicz, J. S. Morley, K. MacKinnon, and D. Billington. Differential inhibition of hepatic morphine UDP-glucuronosyltransferases by metal ions.Biochem. Pharmacol. 43:2335–2340 (1992).PubMedCrossRefGoogle Scholar
  35. 35.
    M. R. Fennessy and J. R. Lee. The assessment of and the problems involved in the experimental evaluation of narcotic analgesics. In S. Ehrenpreis and A. Neidle (eds.),Methods in Narcotics Research, Marcel Dekker, New York, 1975, pp. 73–99.Google Scholar
  36. 36.
    C. A. Turner and R. Murphy. Rapid, high-sensitivity method for measurement of morphine in guinea-pig serum.J. Chromatog. 428:383–387 (1988).CrossRefGoogle Scholar
  37. 37.
    R. F. Venn and A. Michalkiewicz. Fast reliable assay for morphine and its metabolites using high-performance liquid chromatography and native fluorescence detection.J. Chromatog. 525:379–388 (1990).CrossRefGoogle Scholar
  38. 38.
    L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application tod-tubocurarine.Clin. Pharmacol. Ther. 25:358–371 (1979).PubMedGoogle Scholar
  39. 39.
    E. J. Arièns and A. M. Simonis. A molecular basis for drug action.J. Pharm. Pharmacol. 16:137–157 (1964).CrossRefGoogle Scholar
  40. 40.
    E. J. Arièns and A. M. Simonis. A molecular basis for drug action: The interaction of one or more drugs with different receptors.J. Pharma. Pharmacol. 16:289–312 (1964).CrossRefGoogle Scholar
  41. 41.
    E. J. Arièns, A. M. Simonis, and W. M. De Groot. Affinity and intrinsic-activity in the theory of competitive- and non-competitive inhibition and an analysis of some forms of dualism in action.Arch. Int. Pharmacodyn. 100:298–322 (1955).PubMedGoogle Scholar
  42. 42.
    N. H. G. Holford and L. B. Sheiner. Kinetics of pharmacologic response.Pharmacol. Ther. 16:143–166 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    G. J. J. Plomp, R. A. A. Maes, and J. M. van Ree. Disposition of morphine in rat brain: Relationship to biological activity.J. Pharmacol. Exp. Ther. 217:181–188 (1981).PubMedGoogle Scholar
  44. 44.
    M. Melzacka, T. Nebelhut, U. Havemann, J. Vetulani, and K. Kuschinsky. Pharmacokinetics of morphine in striatum and nucleus accumbens: relationship to pharmacological actions.Pharmacol. Biochem. Behav. 23:295–301 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    B. E. Dahlström, L. K. Paalzow, G. Segre, and A. J. Ågren. Relation between morphine pharmacokinetics and analgesia.J. Pharmacokin. Biopharm. 6:41–53 (1978).CrossRefGoogle Scholar
  46. 46.
    L. K. Paalzow. Measurement and modeling of analgesic drug effect. In C. J. van Boxtel, N. H. G. Holford, and M. Danhof (eds.),The In Vivo Study of Drug Action, Elsevier, Amsterdam, The Netherlands, 1992, pp. 133–153.Google Scholar
  47. 47.
    S. M. Johnson and W. W. Fleming. Mechanisms of cellular adaptive sensitivity changes: Applications to opioid tolerance and dependence.Pharmacol. Rev. 41:435–488 (1989).PubMedGoogle Scholar
  48. 48.
    E. Collin and F. Cesselin. Neurobiological mechanisms of opioid tolerance and dependence.Clin. Neuropharmacol. 14:465–488 (1991).PubMedCrossRefGoogle Scholar
  49. 49.
    J. Bläsig, G. Meyer, V. Höllt, J. Hengstenberg, J. Dum, and A. Herz. Non-competitive nature of the antagonistic mechanism responsible for tolerance development to opiate-induced analgesia.Neuropharmacology 18:473–481 (1979).PubMedCrossRefGoogle Scholar
  50. 50.
    J. Shi, N. L. Benowitz, C. P. Denaro, and L. B. Sheiner. Pharmacokinetic-pharmacodynamic modeling of caffeine: Tolerance to pressor effects.Clin.Pharmacol. Ther. 53:6–14 (1993).PubMedCrossRefGoogle Scholar
  51. 51.
    R. B. Rothman. A review of the role of anti-opioid peptides in morphine tolerance and dependence.Synapse 12:129–138 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Dainèle M. -C. Ouellet
    • 1
  • Gary M. Pollack
    • 1
  1. 1.Division of Pharmaceutics, School of PharmacyThe University of North Carolina at Chapel Hill

Personalised recommendations