Pharmacokinetics and pharmacodynamics of bumetanide after intravenous and oral administration to rats: Absorption from various GI segments

  • Sun H. Lee
  • Myung G. Lee
  • Nak D. Kim


Bumetanide, 2, 8, and 20 mg/kg, was administered both intravenously and orally to determine the pharmacokinetics and pharmacodynamics of bumetanide in rats (n=10–12). The absorption of bumetanide from various segments of GI tract and the reasons for the appearance of multiple peaks in plasma concentrations of bumetanide after oral administration were also investigated. After iv dose, the pharmacokinetic parameters of bumetanide, such ast1/2 (21.4, 53.8 vs. 127 min),CL (35.8, 19.1 vs. 13.4 ml/min per kg),CLNR (35.2, 17.8 vs. 12.6 ml/min per kg) andVSS (392, 250 vs. 274 ml/kg) were dose-dependent at the dose range studied. It may be due to the saturable metabolism of bumetanide in rats. After iv dose, 8-hr urine output per 100g body weight increased significantly with increasing doses and it could be due to significantly increased amounts of bumetanide exreted in 8-hr urine with increasing doses. The total amount of sodium and chloride exreted in 8-hr urine per 100g body weight also increased significantly after iv dose of 8 mg/kg, however, the corresponding values for potassium were dose-independent. After oral administration, the percentages of the dose excreted in 24-hr urine as unchanged bumetanide were dose-independent. Bumetanide was absorbed from all regions of GI tract studied and approximately 43.7, 50.0, and 38.4% of the orally administered dose were absorbed between 1 and 24 hr after oral doses of 2, 8, and 20 mg/kg, respectively. Therefore, the appearance of multiple peaks after oral administration could be mainly due to the gastric emptying patterns. The percentages of bumetanide absorbed from GI tract as unchanged bumetanide for up to 24 hr after oral doses of 2, 8, and 20 mg/kg (96.2, 95.4 vs. 98.2%) were not significantly different, suggesting that the problem of precipitation of bumetanide in acidic gastric juices or dissolution may not contribute significantly to the absorption of bumetanide after oral administration. Urine output per 100g body wt increased at oral doses of 8 and 20 mg/kg.

Key Words

bumetanide pharmacokinetics pharmacodynamics multiple peaks absorption from various GI segments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Imai. Effect of bumetanide and furosemide on the thick ascending limb of Henle's loop of rabbits and rats perfused in vitro.Eur. J. Pharmacol. 41:409–416 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    R. A. Branch, P. R. Read, D. Levine, E. E. Vander, J. Shelton, W. Rupp, and L. E. Ramsay. Furosemide and bumetanide: A study of responses in normal English and German subjects.Clin. Pharmacol. Ther. 19:538–545 (1976).PubMedGoogle Scholar
  3. 3.
    K. H. Olesen, B. Sigurd, E. Steiners, and A. Leth. Bumetanide, a new potent diuretic.Acta. Med. Scand. 193:119–131 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    S. C. Halladay, D. E. Carter, and I. G. Sipes. A relationship between the metabolism of bumetanide and its diuretic activity in the rat.Drug Metab. Dispos. 6:45–49 (1978).PubMedGoogle Scholar
  5. 5.
    M. P. Magnussen and E. Eilertsen. Species differences in the diuretic activity and metabolism of bumetanide.Naunyn Schmiedeberg's Arch. Pharmakol. 282 (suppl.): R 61 (1974).Google Scholar
  6. 6.
    D. C. Brater, P. Chennavasin, B. Day, A. Burdette, and S. Andreason. Bumetanide and furosemide.Clin. Pharmacol. Ther. 34:207–213 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    P. J. Pentikäinen, A Penttilä, P. J. Neuvonen and G. Gothoni, Fate of14C-bumetanide in man.Br. J. Clin. Pharmacol. 4:39–44 (1977).PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    P. J. Pentikäinen, P. J. Neuvonen, M. Kekki, and A. Penttilä. Pharmacokinetics of intravenously administered bumetanide in man.J. Pharmacokin. Biopharm. 8:219–228 (1980).CrossRefGoogle Scholar
  9. 9.
    S. J. Kolis, T. H. Williams, and M. A. Schwarts. Identification of the urinary metabolites of14C-bumetanide in the rat and their excretion by rats and dogs.Drug Metab. Dispos. 4:169–176 (1976).PubMedGoogle Scholar
  10. 10.
    A. Ward and R. C. Heel. Bumetanide: A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use.Drugs 28:426–464 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    D. E. Smith and H. S. H. Lau. Determinants of bumetanide response in the dog: Effect of probenecid.J. Pharmacokin. Biopharm. 11:31–46 (1983).CrossRefGoogle Scholar
  12. 12.
    H. S. H. Lau, M. L. Hyneck, R. R. Berardi, R. D. Swarts, and D. E. Smith. Kinetics, dynamics, and bioavailability of bumetanide in healthy subjects and patients with chronic renal failure.Clin. Pharmacol. Ther. 39:635–645 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    S. C. Halladay, I. G. Sipes, and D.E. Carter. Diuretic effect and metabolism of bumetanide in man.Clin. Pharmacol. Ther. 22:179–187 (1977).PubMedGoogle Scholar
  14. 14.
    A. A. Holazo, W. A. Colburn, J. H. Gustafson, R. L. Young, and M. Parsonet. Pharmacokinetics of bumetanide following intravenous, intramuscular and oral administration to normal subjects.J. Pharm. Sci. 73:1108–1113 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    H. W. Chang, E. J. Yoon, M. G. Lee, and N. D. Kim, Pharmacokinetics of drugs in blood VI: Unusual distribution and storage effect of bumetanide,Seoul Univ. J. Pharm. Sci. 13:1–7 (1988).Google Scholar
  16. 16.
    M. G. Lee and W. L. Chiou. Evaluation of potential causes for the incomplete bioavailability of furosemide: Gastric first-pass metabolism.J. Pharmacokin. Biopharm. 11: 623–640 (1983).CrossRefGoogle Scholar
  17. 17.
    F-H. Hsu, T. Prueksaritanont, M. G. Lee, and W. L. Chiou. The phenomenon and cause of the dose-dependent oral absorption of chlorothiazide in rats: Extrapolation to human data based on the body surface area concept.J. Pharmacokin. Biopharm. 15:369–386 (1987).CrossRefGoogle Scholar
  18. 18.
    Y. M. Choi, S. H. Lee, S. H. Jang, and M. G. Lee. Effects of phenobarbital and 3-methylcholanthrene pretreatment on the pharmacokinetics and pharmacodynamics of bumetanide in rats.Biopharm. Drug Dispos. 12:311–324 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    D. E. Smith. High performance liquid chromatographic assay for bumetanide in plasma and urine.J. Pharm. Sci. 71:520–523 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    G. Lam and W. L. Chiou. Arterial and venous blood sampling in pharmacokinetic studies; Propranolol in rabbits and dogs.Res. Commun. Chem. Pathol. Pharmacol. 33:33–48 (1981).PubMedGoogle Scholar
  21. 21.
    W. L. Chiou. Critical evaluation of potential error in pharmacokinetic studies using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve.J. Pharmacokin. Biopharm. 6:539–546 (1978).CrossRefGoogle Scholar
  22. 22.
    M. Gibaldi and D. Perrier.Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.Google Scholar
  23. 23.
    M. L. Chen, G. Lam, M. G. Lee, and W. L. Chiou. Arterial and venous blood sampling in pharmacokinetic studies: Griseofulvin.J. Pharm. Sci. 71:1386–1389 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    W. L. Chiou. New calculation method for mean apparent drug volume of distribution and application to rationale dosage regimen.J. Pharm. Sci. 68:1068–1069 (1979).Google Scholar
  25. 25.
    H. J. Shim, M. G. Lee, and M. H. Lee. Factors influencing the protein binding of bumetanide using an equilibrium dialysis technique.J. Clin. Pharm. Ther. 16:467–476 (1991).PubMedCrossRefGoogle Scholar
  26. 26.
    L. A. Marcantonio, W. H. R. Auld, W. R. Murdock, R. Purohit, G. G. Skellern, and O. A. Howes. The pharmacokinetics and pharmacodynamics of the diuretic bumetanide in hepatic and renal disease.Br. J. Clin. Pharmacol. 15:245–252 (1983).PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    S. H. Ryoo, M. G. Lee, and M. H. Lee. Effect of intravenous infusion time on the pharmacokinetics and pharmacodynamics of the same total dose of bumetanide.Biopharm. Drug Dispos. (in press).Google Scholar
  28. 28.
    I. Bekersky and A. Popick. Metabolism of bumetanide by the isolated perfused rat kidney.Drug. Metab. Dispos. 11:512–513 (1983).PubMedGoogle Scholar
  29. 29.
    B. Odlind, B. Beermann, and B. Lindstörm Coupling between renal tubular secretion and effect of bumetanide.Clin. Pharmacol. Ther. 34:805–809 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    R. A. Branch, C. J. C. Robert, M. Homeida, and D. Levine. Determination of response to furosemide in normal subjects.Br. J. Clin. Pharmacol. 4:121–127 (1977).PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    M. G. Lee, T. Li, and W. L. Chiou. Effects of intravenous infusion time on the pharmacokinetics and pharmacodynamics of the same total dose of furosemide.Biopharm. Drug Dispos. 7:537–547 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Kahn, A. M. Kaufmann, and F. L. Mac-Moune. Response to repeated furosemide administration on low chloride and low sodium intake in the rat.Clin. Sci. 64:565–572 (1983).PubMedGoogle Scholar
  33. 33.
    G. Giebisch. In M. Martines-Moldonado (ed.),Methods of Pharmacology, Vol. 4A, Plenum Press, New York, 1976, pp. 121–164.CrossRefGoogle Scholar
  34. 34.
    V. S. Chungi, I. W. Dittert, and R. B. Smith. Gastrointestinal sites of furosemide absorption in rats.Int. J. Pharm. 4:27–38 (1979).CrossRefGoogle Scholar
  35. 35.
    BumexR (bumetanide/Roche).Comprehensive Product Information. Professional Service Department, Roche Laboratories, Division of Hoffman-La Roche Inc. Nutley, NJ, 1983.Google Scholar
  36. 36.
    F. Andreason, H.E. Boetkar, and K. Lorentzen. In vitro studies in the hydrolysis of furosemide in gastrointestinal juice.Br. J. Clin. Pharmacol. 14:306–309 (1982).CrossRefGoogle Scholar
  37. 37.
    J. H. Wood, A. J. Lee, and L. K. Girrettson. Periodicity during the distribution phase for drugs administered intravenously to humans.Drug. Metab. Rev. 9:119–128 (1979).PubMedGoogle Scholar
  38. 38.
    J. A. Cook, D. E. Smith, L. A. Cornish, R. M. Tarkanow, S. M. Nicklas, and M. L. Hyneck. Kinetics, dynamics and bioavailability of bumetanide of healthy subject and patients with congestive heart failure.Clin. Pharmacol. Ther. 44:487–500 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    S. Kaojarern, B. Day, and D. C. Brater. The time course of delivery of furosemide into the urine: An independent determinant of overall response.Kidney Int. 22:69–74 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Sun H. Lee
    • 1
  • Myung G. Lee
    • 1
  • Nak D. Kim
    • 1
  1. 1.College of PharmacySeoul National UniversitySeoulKorea

Personalised recommendations