Skip to main content
Log in

Pharmacokinetics and pharmacodynamics of bumetanide after intravenous and oral administration to rats: Absorption from various GI segments

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Bumetanide, 2, 8, and 20 mg/kg, was administered both intravenously and orally to determine the pharmacokinetics and pharmacodynamics of bumetanide in rats (n=10–12). The absorption of bumetanide from various segments of GI tract and the reasons for the appearance of multiple peaks in plasma concentrations of bumetanide after oral administration were also investigated. After iv dose, the pharmacokinetic parameters of bumetanide, such ast 1/2 (21.4, 53.8 vs. 127 min),CL (35.8, 19.1 vs. 13.4 ml/min per kg),CL NR (35.2, 17.8 vs. 12.6 ml/min per kg) andV SS (392, 250 vs. 274 ml/kg) were dose-dependent at the dose range studied. It may be due to the saturable metabolism of bumetanide in rats. After iv dose, 8-hr urine output per 100g body weight increased significantly with increasing doses and it could be due to significantly increased amounts of bumetanide exreted in 8-hr urine with increasing doses. The total amount of sodium and chloride exreted in 8-hr urine per 100g body weight also increased significantly after iv dose of 8 mg/kg, however, the corresponding values for potassium were dose-independent. After oral administration, the percentages of the dose excreted in 24-hr urine as unchanged bumetanide were dose-independent. Bumetanide was absorbed from all regions of GI tract studied and approximately 43.7, 50.0, and 38.4% of the orally administered dose were absorbed between 1 and 24 hr after oral doses of 2, 8, and 20 mg/kg, respectively. Therefore, the appearance of multiple peaks after oral administration could be mainly due to the gastric emptying patterns. The percentages of bumetanide absorbed from GI tract as unchanged bumetanide for up to 24 hr after oral doses of 2, 8, and 20 mg/kg (96.2, 95.4 vs. 98.2%) were not significantly different, suggesting that the problem of precipitation of bumetanide in acidic gastric juices or dissolution may not contribute significantly to the absorption of bumetanide after oral administration. Urine output per 100g body wt increased at oral doses of 8 and 20 mg/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Imai. Effect of bumetanide and furosemide on the thick ascending limb of Henle's loop of rabbits and rats perfused in vitro.Eur. J. Pharmacol. 41:409–416 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. R. A. Branch, P. R. Read, D. Levine, E. E. Vander, J. Shelton, W. Rupp, and L. E. Ramsay. Furosemide and bumetanide: A study of responses in normal English and German subjects.Clin. Pharmacol. Ther. 19:538–545 (1976).

    CAS  PubMed  Google Scholar 

  3. K. H. Olesen, B. Sigurd, E. Steiners, and A. Leth. Bumetanide, a new potent diuretic.Acta. Med. Scand. 193:119–131 (1973).

    Article  CAS  PubMed  Google Scholar 

  4. S. C. Halladay, D. E. Carter, and I. G. Sipes. A relationship between the metabolism of bumetanide and its diuretic activity in the rat.Drug Metab. Dispos. 6:45–49 (1978).

    CAS  PubMed  Google Scholar 

  5. M. P. Magnussen and E. Eilertsen. Species differences in the diuretic activity and metabolism of bumetanide.Naunyn Schmiedeberg's Arch. Pharmakol. 282 (suppl.): R 61 (1974).

    Google Scholar 

  6. D. C. Brater, P. Chennavasin, B. Day, A. Burdette, and S. Andreason. Bumetanide and furosemide.Clin. Pharmacol. Ther. 34:207–213 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. P. J. Pentikäinen, A Penttilä, P. J. Neuvonen and G. Gothoni, Fate of14C-bumetanide in man.Br. J. Clin. Pharmacol. 4:39–44 (1977).

    Article  PubMed Central  PubMed  Google Scholar 

  8. P. J. Pentikäinen, P. J. Neuvonen, M. Kekki, and A. Penttilä. Pharmacokinetics of intravenously administered bumetanide in man.J. Pharmacokin. Biopharm. 8:219–228 (1980).

    Article  Google Scholar 

  9. S. J. Kolis, T. H. Williams, and M. A. Schwarts. Identification of the urinary metabolites of14C-bumetanide in the rat and their excretion by rats and dogs.Drug Metab. Dispos. 4:169–176 (1976).

    CAS  PubMed  Google Scholar 

  10. A. Ward and R. C. Heel. Bumetanide: A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use.Drugs 28:426–464 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. D. E. Smith and H. S. H. Lau. Determinants of bumetanide response in the dog: Effect of probenecid.J. Pharmacokin. Biopharm. 11:31–46 (1983).

    Article  CAS  Google Scholar 

  12. H. S. H. Lau, M. L. Hyneck, R. R. Berardi, R. D. Swarts, and D. E. Smith. Kinetics, dynamics, and bioavailability of bumetanide in healthy subjects and patients with chronic renal failure.Clin. Pharmacol. Ther. 39:635–645 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. S. C. Halladay, I. G. Sipes, and D.E. Carter. Diuretic effect and metabolism of bumetanide in man.Clin. Pharmacol. Ther. 22:179–187 (1977).

    CAS  PubMed  Google Scholar 

  14. A. A. Holazo, W. A. Colburn, J. H. Gustafson, R. L. Young, and M. Parsonet. Pharmacokinetics of bumetanide following intravenous, intramuscular and oral administration to normal subjects.J. Pharm. Sci. 73:1108–1113 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. H. W. Chang, E. J. Yoon, M. G. Lee, and N. D. Kim, Pharmacokinetics of drugs in blood VI: Unusual distribution and storage effect of bumetanide,Seoul Univ. J. Pharm. Sci. 13:1–7 (1988).

    Google Scholar 

  16. M. G. Lee and W. L. Chiou. Evaluation of potential causes for the incomplete bioavailability of furosemide: Gastric first-pass metabolism.J. Pharmacokin. Biopharm. 11: 623–640 (1983).

    Article  CAS  Google Scholar 

  17. F-H. Hsu, T. Prueksaritanont, M. G. Lee, and W. L. Chiou. The phenomenon and cause of the dose-dependent oral absorption of chlorothiazide in rats: Extrapolation to human data based on the body surface area concept.J. Pharmacokin. Biopharm. 15:369–386 (1987).

    Article  CAS  Google Scholar 

  18. Y. M. Choi, S. H. Lee, S. H. Jang, and M. G. Lee. Effects of phenobarbital and 3-methylcholanthrene pretreatment on the pharmacokinetics and pharmacodynamics of bumetanide in rats.Biopharm. Drug Dispos. 12:311–324 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. D. E. Smith. High performance liquid chromatographic assay for bumetanide in plasma and urine.J. Pharm. Sci. 71:520–523 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. G. Lam and W. L. Chiou. Arterial and venous blood sampling in pharmacokinetic studies; Propranolol in rabbits and dogs.Res. Commun. Chem. Pathol. Pharmacol. 33:33–48 (1981).

    CAS  PubMed  Google Scholar 

  21. W. L. Chiou. Critical evaluation of potential error in pharmacokinetic studies using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve.J. Pharmacokin. Biopharm. 6:539–546 (1978).

    Article  CAS  Google Scholar 

  22. M. Gibaldi and D. Perrier.Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.

    Google Scholar 

  23. M. L. Chen, G. Lam, M. G. Lee, and W. L. Chiou. Arterial and venous blood sampling in pharmacokinetic studies: Griseofulvin.J. Pharm. Sci. 71:1386–1389 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. W. L. Chiou. New calculation method for mean apparent drug volume of distribution and application to rationale dosage regimen.J. Pharm. Sci. 68:1068–1069 (1979).

    Google Scholar 

  25. H. J. Shim, M. G. Lee, and M. H. Lee. Factors influencing the protein binding of bumetanide using an equilibrium dialysis technique.J. Clin. Pharm. Ther. 16:467–476 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. L. A. Marcantonio, W. H. R. Auld, W. R. Murdock, R. Purohit, G. G. Skellern, and O. A. Howes. The pharmacokinetics and pharmacodynamics of the diuretic bumetanide in hepatic and renal disease.Br. J. Clin. Pharmacol. 15:245–252 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. S. H. Ryoo, M. G. Lee, and M. H. Lee. Effect of intravenous infusion time on the pharmacokinetics and pharmacodynamics of the same total dose of bumetanide.Biopharm. Drug Dispos. (in press).

  28. I. Bekersky and A. Popick. Metabolism of bumetanide by the isolated perfused rat kidney.Drug. Metab. Dispos. 11:512–513 (1983).

    CAS  PubMed  Google Scholar 

  29. B. Odlind, B. Beermann, and B. Lindstörm Coupling between renal tubular secretion and effect of bumetanide.Clin. Pharmacol. Ther. 34:805–809 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. R. A. Branch, C. J. C. Robert, M. Homeida, and D. Levine. Determination of response to furosemide in normal subjects.Br. J. Clin. Pharmacol. 4:121–127 (1977).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. M. G. Lee, T. Li, and W. L. Chiou. Effects of intravenous infusion time on the pharmacokinetics and pharmacodynamics of the same total dose of furosemide.Biopharm. Drug Dispos. 7:537–547 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. T. Kahn, A. M. Kaufmann, and F. L. Mac-Moune. Response to repeated furosemide administration on low chloride and low sodium intake in the rat.Clin. Sci. 64:565–572 (1983).

    CAS  PubMed  Google Scholar 

  33. G. Giebisch. In M. Martines-Moldonado (ed.),Methods of Pharmacology, Vol. 4A, Plenum Press, New York, 1976, pp. 121–164.

    Chapter  Google Scholar 

  34. V. S. Chungi, I. W. Dittert, and R. B. Smith. Gastrointestinal sites of furosemide absorption in rats.Int. J. Pharm. 4:27–38 (1979).

    Article  CAS  Google Scholar 

  35. BumexR (bumetanide/Roche).Comprehensive Product Information. Professional Service Department, Roche Laboratories, Division of Hoffman-La Roche Inc. Nutley, NJ, 1983.

    Google Scholar 

  36. F. Andreason, H.E. Boetkar, and K. Lorentzen. In vitro studies in the hydrolysis of furosemide in gastrointestinal juice.Br. J. Clin. Pharmacol. 14:306–309 (1982).

    Article  Google Scholar 

  37. J. H. Wood, A. J. Lee, and L. K. Girrettson. Periodicity during the distribution phase for drugs administered intravenously to humans.Drug. Metab. Rev. 9:119–128 (1979).

    CAS  PubMed  Google Scholar 

  38. J. A. Cook, D. E. Smith, L. A. Cornish, R. M. Tarkanow, S. M. Nicklas, and M. L. Hyneck. Kinetics, dynamics and bioavailability of bumetanide of healthy subject and patients with congestive heart failure.Clin. Pharmacol. Ther. 44:487–500 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. S. Kaojarern, B. Day, and D. C. Brater. The time course of delivery of furosemide into the urine: An independent determinant of overall response.Kidney Int. 22:69–74 (1982).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by SNU Development Foundation, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., Lee, M.G. & Kim, N.D. Pharmacokinetics and pharmacodynamics of bumetanide after intravenous and oral administration to rats: Absorption from various GI segments. Journal of Pharmacokinetics and Biopharmaceutics 22, 1–17 (1994). https://doi.org/10.1007/BF02353407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353407

Key Words

Navigation