Periodica Mathematica Hungarica

, Volume 21, Issue 4, pp 273–279 | Cite as

Irregular lil behaviour of lacunary trigonometric series

  • I. Berkes
Article
  • 20 Downloads

AMS (MOS) subject classifications (1980/85)

Primary 

Key words and phrases

Lacunary trigonometric series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I.Berkes, An almost sure invariance principle for lacunary trigonometric series.Acta Math. Acad. Sci. Hung. 26 (1975) 209–220.MR 54, 14031CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    I. Berkes, A note on lacunary trigonometric series.Acta Math. Hung. (to appear)Google Scholar
  3. [3]
    P.Erdős, On trigonometric sums with gaps.Magyar Tud. Akad. Mat. Kut. Int. Közl. 7 (1962) 37–42.Google Scholar
  4. [4]
    W.Feller, The general form of the so-called law of the iterated logarithm.Trans. Hung. 7 (1972) 147–153.MR 47, 4310Google Scholar
  5. [5]
    A.Földes, Further statistical properties of the Walsh functions.Studia Sci. Math. Hung. 7 (1972) 147–153.MR 47, 4310MATHGoogle Scholar
  6. [6]
    V.Gaposhkin, Lacunary series and independent functions.Uspehi Mat. Nauk. 21/6 (1966) 3–82. (In Russian.)Google Scholar
  7. [7]
    G. Szegő, Orthogonal polynomials.Amer. Math. Soc. Coll. Publ., XXIII (1959). (New York)Google Scholar
  8. [8]
    S.Takahashi, On the law the iterated logarithm for lacunary trigonometric series.Tohoku Math. Journ. 24 (1972) 319–329. and27 (1975) 391–403.MATHGoogle Scholar
  9. [9]
    S.Takahashi, Almost sure invariance principles for lacunary trigonometric series.Tohoku Math. Journ. 31 (1979) 439–451.MATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1990

Authors and Affiliations

  • I. Berkes
    • 1
  1. 1.BudapestHungary

Personalised recommendations