Skip to main content
Log in

Periodic solutions of dynamical systems

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

In questo lavoro si cercano soluzioni periodiche di periodo T assegnato di sistemi dinamici. In particolare si considera un sistema di n equazioni differenziali del secondo ordine del tipo\( - \ddot x = \nabla U(x,t)\) doveU ɛC 1(ℝn x x ℝ, ℝ),U(x, t + T)=U(x,t) ∀ xn, ∀t ɛ ℝ T>0. Nel caso in cui il problema sia asintoticamente lineare, con termine nonlineare limitato e in condizioni di risonanza, troviamo che esiste\(\bar T \varepsilon \mathbb{R}\) tale che per\(T > \bar T\) il sistema ha una molteplicità di soluzioni.

Summary

In this paper we look for T-periodic solutions of dynamical systems. Particularly we consider the system\( - \ddot x = \nabla U(x,t)\) whereU ɛC 1(ℝn x x ℝ, ℝ),U(x, t + T)=U(x,t) ∀ xn, ∀t ɛ ℝ T>0. We assume that the problem is asymptotically linear with a bounded nonlinearity. Under a resonance assumption, we find a multiplicity of T-periodic solutions for T large enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Referenres

  1. Benci V.,A geometrical index for the group S 1 and applications to some nonlinear problems, Nonlin. Anal. T.M.A. 7, 9, 981–1012 (1983).

    MathSciNet  Google Scholar 

  2. Benci V.,On the critical point theory for indefinite functional in the presence of symmetries, Trans. Amer. Math. Soc. 274, 533–572 (1982).

    MATH  MathSciNet  Google Scholar 

  3. Capozzi A., Salvatore A.,Periodic solutions for nonlinear problems with strong resonance at infinity, Comm. Math. Univ. Car. 23, 3, 415–425 (1982).

    MathSciNet  Google Scholar 

  4. Thews K.,Nontrivial solutions of elliptic equations at resonance, Proc. R. Soc. Edinb. 85A, 119–129 (1980).

    MathSciNet  Google Scholar 

  5. Bartolo P., Benci V., Fortunato D.,Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlin. Anal. T.M.A. 7, 9, 981–1012 (1983).

    MathSciNet  Google Scholar 

  6. Benci V., Capozzi A., Fortunato D.,Periodic solutions of Hamiltonian systems of prescribed period, Math. Research Center, Technical Summary Report n. 2508, Univ. of Wisconsin-Madison (1983).

  7. Coron J.M.,Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann. 262, 2, (1983), 273–285.

    Article  MATH  MathSciNet  Google Scholar 

  8. Marlin J.A.,Periodic motions of coupled simple pendulum with periodic disturbances, Intenr. J. Nonlinear Mech. 3, 439–447 (1968).

    MATH  MathSciNet  Google Scholar 

  9. Mawin J.,Une generalization du théorem de J.A. Marlin, Intern. J. Nonlinear Mech., 335–339 (1970).

  10. Rabinowitz,Periodic solutions of Hamiltonian systems: a survey, SIAM J. Math. Anal. 13, 343–352 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  11. Capozzi A., Salvatore A.,Nonlinear problems with strong resonance at infinity: an abstract theorem and applications, Proc. R. Soc. Edinb., 99A, 333–345 (1985).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capozzi, A., Fortunato, D. & Salvatore, A. Periodic solutions of dynamical systems. Meccanica 20, 281–284 (1985). https://doi.org/10.1007/BF02352680

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02352680

Keywords

Navigation