Advertisement

Communications in Mathematical Physics

, Volume 139, Issue 2, pp 395–431 | Cite as

Proof of chiral symmetry breaking in strongly coupled lattice gauge theory

  • Manfred Salmhofer
  • Erhard Seiler
Article

Abstract

We study chiral symmetry in the strong coupling limit of lattice gauge theory with staggered fermions and show rigorously that chiral symmetry is broken spontaneously in massless QED and the gauge-invariant Nambu-Jona-Lasinio model if the dimension of spacetime is at least four. The results for the chiral condensate as a function of the mass imply that the mean-field approximation is an upper bound for this observable which becomes exact as the dimension goes to infinity. For the model with gauge groupU(N),N=2,3,4, we prove that chiral long-range order exists at zero mass in four or more dimensions.

Keywords

Neural Network Statistical Physic Complex System Gauge Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nambu, Y.: Phys. Rev. Lett.4, 380 (1960)CrossRefADSGoogle Scholar
  2. 2.
    Nambu, Y., Jona-Lasinio, G.: Phys. Rev.122, 345 (1961)CrossRefADSGoogle Scholar
  3. 3.
    Kogut, J. B.: Rev. Mod. Phys.55, 775 (1983)CrossRefADSGoogle Scholar
  4. 4.
    Thirring, W.: Ann. Phys.3, 91 (1958)MATHMathSciNetGoogle Scholar
  5. 5.
    Mitter, P. K., Weisz, P. H.: Phys. Rev. D8, 4410 (1973)CrossRefADSGoogle Scholar
  6. 6.
    Gross, D., Neveu, A.: Phys. Rev. D10, 3235 (1974)ADSGoogle Scholar
  7. 7.
    Mermin, N. D., Wagner, H.: Phys. Rev. Lett.17, 1133 (1966)ADSGoogle Scholar
  8. 8.
    Dobrushin, R. L., Shlosman, S. B.: Commun. Math. Phys.42, 31 (1975)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Coleman, S.: Commun. Math. Phys.31, 259 (1973); actually this was first proven by Maison, D., Reeh, H.: Commun. Math. Phys.24, 67 (1971)CrossRefGoogle Scholar
  10. 10.
    Miransky, V. A.: Nuovo Cimento90A, 149 (1985)Google Scholar
  11. 11.
    Kogut, J. B., Dagotto, E., Kocic, A.: Phys. Rev. Lett.60, 772 (1988);61, 2416 (1988); Nucl. Phys. B317, 253, 271 (1989)ADSGoogle Scholar
  12. 12.
    Göckeler, M., Horsley, R., Laermann, E., Rakow, P., Schierholz, G., Sommer, R., Wiese, U.-J.: Nucl. Phys. B334, 527 (1990)CrossRefADSGoogle Scholar
  13. 13.
    Hands, S., Kogut, J. B., Dagotto, E.: Nucl. Phys. B333, 551 (1990)CrossRefADSGoogle Scholar
  14. 14.
    Göckeler, M., Horsley, R., Laermann, E., Wiese, U.-J., Rakow, P., Schierholz, G., Sommer, R.: Phys. Lett.251B, 567 (1990)ADSGoogle Scholar
  15. 15.
    Lüscher, M.: Nucl. Phys. B341, 341 (1990)CrossRefADSMATHGoogle Scholar
  16. 16.
    Aoki, K. I.: Kyoto preprint RIFP-758 (1988)Google Scholar
  17. 17.
    Rakow, P. E. L.: Nucl. Phys. B356, 27 (1991)CrossRefADSGoogle Scholar
  18. 18.
    Fröhlich, J., Simon, B., Spencer, T.: Commun. Math. Phys.50, 79 (1976)CrossRefGoogle Scholar
  19. 19.
    Fröhlich, J., Israel, R. B., Lieb, E. H., Simon, B.: Commun. Math. Phys.62, 1 (1978)Google Scholar
  20. 20.
    Gruber, C., Kunz, H.: Commun. Math. Phys.22, 133 (1971)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Heilmann, O. J., Lieb, E. H.: Commun. Math. Phys.25, 190 (1972)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Fisher, M. E., Stephenson, J.: Phys. Rev.132, 1411 (1963)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Kogut, J., Susskind, L.: Phys. Rev. D11, 395 (1975) Banks, T., Kogut, J., Susskind, L.: Phys. Rev. D13, 1043 (1976) Banks, T., Raby, S., Susskind, L., Kogut, J., Jones, D. R. T., Scharbach, P. N., Sinclair, D.: Phys. Rev. D15, 1111 (1976) Susskind, L.: Phys. Rev. D16, 3031 (1977)ADSGoogle Scholar
  24. 24.
    Sharatchandra, H., Thun, H., Weisz, P.: Nucl. Phys. B192, 205 (1981)CrossRefADSGoogle Scholar
  25. 25.
    Wilson, K.: Phys. Rev. D10, 2455 (1974)ADSGoogle Scholar
  26. 26.
    Berezin, F. A.: The method of second quantization. New York: Academic Press 1966Google Scholar
  27. 27.
    Bałaban, T., Brydges, D., Imbrie, J., Jaffe, A.: Ann. Phys.158, 281 (1984)Google Scholar
  28. 28.
    Salmhofer, M.: PhD thesis, MPI-PAE-Th 80/90Google Scholar
  29. 29.
    Lanford, O., Ruelle, D.: Commun. Math. Phys.13, 194 (1969)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Rossi, P., Wolff, U.: Nucl. Phys. B248, 105 (984) Wolff, U.: Nucl. Phys. B280, 680 (1987)Google Scholar
  31. 31.
    Samuel, S.: J. Math. Phys.21, 2695 (1980)ADSMathSciNetGoogle Scholar
  32. 32.
    Bars, I.: J. Math. Phys.21, 2678 (1980)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Brézin, E., Gross, D.: Phys. Lett.97B, 120 (1980)ADSGoogle Scholar
  34. 34.
    Kluberg-Stern, H., Morel, A., Napoly, O., Petersson, B.: Nucl. Phys. B190, 504 (1981) Kluberg-Stern, H., Morel, A., Petersson, B.: Nucl. Phys. B215, 527 (1983)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Fisher, M. E.: Phys. Rev.124, 1664 (1961)ADSMATHMathSciNetGoogle Scholar
  36. 36.
    Salmhofer, M., Seiler, E.: Lett. Math. Phys.21, 13 (1991)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Mermin, N. D.: J. Math. Phys.8, 1061 (1967)CrossRefGoogle Scholar
  38. 38.
    Kasteleyn, P. W.: Physica, Grav.27, 1209 (1961)Google Scholar
  39. 39.
    Temperley, H. N. V., Fisher, M. E.: Phil. Mag. Serie86, 1664 (1961)Google Scholar
  40. 40.
    Kasteleyn, P. W.: J. Math. Phys.4, 287 (1963)CrossRefMathSciNetGoogle Scholar
  41. 41.
    McCoy, B., Wu, T. T.: The two-dimensional Ising model. Cambridge, MA: Harvard University Press 1973Google Scholar
  42. 42.
    Hartwig, R.: J. Math. Phys.7, 286 (1966)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Penrose, O., Lebowitz, J. L.: Commun. Math. Phys.39, 165 (1974)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Vladimirov, V. S.: Methods of the theory of functions of many complex variables. Cambridge, MA: M.I.T. Press 1966Google Scholar
  45. 45.
    Osterwalder, K., Seiler, E.: Ann. Phys.110, 440 (1978)MathSciNetGoogle Scholar
  46. 46.
    Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. Lecture Notes in Physics, vol. 159. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  47. 47.
    Reed, M., Simon, B.: Methods of modern mathematical physics, vol. 1. New York: Academic Press 1980Google Scholar
  48. 48.
    Erdélyi, A. (ed.): The Bateman manuscript project: higher transcendental functions, vol. 2. New York: McGraw-Hill 1953Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Manfred Salmhofer
    • 1
  • Erhard Seiler
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikWerner-Heisenberg InstitutMünchen 40Federal Republic of Germany

Personalised recommendations