Journal of Molecular Evolution

, Volume 42, Issue 5, pp 493–499 | Cite as

De Novo synthesis of DNA-like molecules by polynucleotide phosphorylase in vitro

  • Mirko Beljanski


In the presence of Mg2+ ions, polynucleotide phosphorylase (PNPase, EC is known to synthesize RNA-like polymers using ribonucleoside-5′-diphosphate (NDP) substrates but to be unable to utilize deoxyribonucleoside substrates. Our experiments show that when MgCl2 is replaced by FeCl3, PNPase becomes able to synthesize deoxyheteropolymers using deoxyribonucleoside-5′-diphosphates (dNDPs). The deoxyheteropolymer formed from the four dNDPs is degraded by pancreatic DNase, but not by RNase, and is readily used as a template by DNA-dependent DNA polymerase. Synthesis of this DNA-like polymer is accomplished de novo without the help of any primer or preexisting template. What is more, dA/dG and dC/dT ratios of polymers synthesized by different bacterial PNPases closely match ratios found in DNA of the bacterial species the enzyme came from.

Key words

Polynucleotide phosphorylase De novo deoxypolymer synthesis DNA Deoxyribonucleoside-5′-diphosphates Ferric ions 



polynucleotide phosphorylase






deoxyribonucleic acid


ribonucleic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbieri M (1981) The ribotype theory of the origin of life. J Theor Biol 91:545–601CrossRefPubMedGoogle Scholar
  2. Beers RF Jr (1956) Enzymatic synthesis and properties of a polynucleotide from adenosine diphosphate. Nature 177:790–791PubMedGoogle Scholar
  3. Beers RF Jr (1957) Partial purification and properties of a polynucleotide phosphorylase from Micrococcus lysodeikticus. Biochem J 66:686–693PubMedGoogle Scholar
  4. Beers RF Jr (1958) Polynucleotides. IV. Role of salts and magnesium in the polymerization of ribonucleotides by polynucleotide phosphorylase. Arch Biochem Biophys 75:497–507PubMedGoogle Scholar
  5. Beljanski M, Beljanski MS (1968) Synthese chez Escherichia coli des ARN dont la structure primaire differe de celle de l'ADN. CR Acad Sci 267 (série D):1058–1060Google Scholar
  6. Beljanski M, Bourgarel P, Beljanski MS (1970) Showdomycine et biosynthèse d'ARN non complèmentaires de l'ADN. Ann Inst Pasteur 118:253–276Google Scholar
  7. Beljanski M, Niu LC, Beljanski MS et al. (1988) Iron stimulated RNA dependent DNA polymerase activity from goldfish eggs. Cell Mol Biol 34:17–25PubMedGoogle Scholar
  8. Biebricher CK, Eigen M, McCaskill JS (1993) Template-directed and template-free RNA synthesis by QB replicase. J Mol Biol 231:175–179CrossRefPubMedGoogle Scholar
  9. Biebricher CK, Luce R (1993) Sequence analysis of RNA species synthesized by QB replicase without template. Biochemistry 32:4848–4854CrossRefPubMedGoogle Scholar
  10. Bessman MJ Lehman JR, Simms ES, Kornberg A (1958) Enzymatic synthesis of deoxyribonucleic acid. J Biol Chem 233:171–177PubMedGoogle Scholar
  11. Brack A, Raulin F (1991) L'évolution chimique et les origines de la vie. Collection Les grands problèms es de l'évolution, Masson, Paris, 1991Google Scholar
  12. Brack A (1994) Quelle chime aux origines de la vie? La Vie des Sciences, C R Acad Sci (série générale) T 11, 4:223–242Google Scholar
  13. Brummond DO, Staehelin M, Ochoa S (1957) Enzymatic synthesis of polynucleotides. II. Distribution of polynucleotde phosphorylase. J Biol Chem 225:835–849PubMedGoogle Scholar
  14. Burton K (1965) A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62:315–323Google Scholar
  15. Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R (1981) The origin of genetic information. Sci Am 244:88–118PubMedGoogle Scholar
  16. Ferris J (1994) Origins of life. Chemical replication. Nature 369:184–185CrossRefPubMedGoogle Scholar
  17. Follmann H (1982) Deoxyribonucleotide synthesis and the emergence of DNA in molecular evolution. Naturwissenschaften 69:75–81CrossRefPubMedGoogle Scholar
  18. Fox SW (1974) The proteinoid theory of the origin of life and competing ideas. Am Biol Teacher 36:161–181Google Scholar
  19. Hilmoe JR, Heppel LA (1957) Polynucleotide phosphorylase in liver nuclei. J Biol Chem 79:4810–4811Google Scholar
  20. Kornberg A, Lehman JR, Bessman MJ, Simms ES (1956) Enzymatic synthesis of deoxyribonucleic acid. Nature 21:197–198Google Scholar
  21. Lewin R (1984) How microorganisms transport iron. Science 225:401–402Google Scholar
  22. Ochoa S (1956) Enzymatic synthesis of ribonucleic acid-like polynucleotides. Fed Proc 15:832–840PubMedGoogle Scholar
  23. Ochoa S (1957) Enzymatic synthesis of polynucleotides III. Phosphorolysis of natural and synthetic ribopolynucleotides. Arch Biochem Biophys 69:119–129CrossRefPubMedGoogle Scholar
  24. Orgel LE (1986) RNA catalysis and the origin of life. J Theor Biol 123:127–149PubMedGoogle Scholar
  25. Reichard P (1993) From RNA to DNA, why so many ribonucleotide reductases? Science 260:1773–1777PubMedGoogle Scholar
  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd ed, B-3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  27. Vardanis A, Hochster RM (1961) Nucleotide specificity of the polynucleotide phosphorylase of the crown-gall tumor-inducing organism Agrobacterium tumefaciens. Can J Biochem Biophys 39:1695–1704Google Scholar
  28. Warburg O, Christian W (1942) Isolation and crystallization of enolase. Biochem Zeit 310:384–390Google Scholar
  29. Woese CR (1967) The genetic code. Harper and Row, New-York pp 70–71Google Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • Mirko Beljanski
    • 1
  1. 1.Cerbiol ApplicationCentre de Recherche BiologiqueSaint-PrimFrance

Personalised recommendations