Skip to main content
Log in

Application of Mössbauer spectroscopy to physical metallurgy: The role of light interstitial elements

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Light elements like hydrogen, nitrogen, and carbon, residing on interstitial sites of the host lattice, are capable of inducing noticeable changes in the physical properties of the material affected by their presence. Hydrogen uptake by different intermetallic compounds can lead to completely different results, depending on the chemical affinity between hydrogen and the constituent elements of the compounds. In the cases of considerable hydrogen concentrations, several distinct hydride phases can usually be found and identified by Mössbauer spectroscopy. Alterations of the magnetic behaviour of the intermetallic hydride are frequently observed. Nitrogen and carbon serve as agents for solid solution and precipitation hardening in commercial steels. Among the various methods for alloying with these elements and for controlling their distribution, implantation and surface treatment by use of a laser beam are of particular interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alefeld and J. Völkl, eds.,Hydrogen in Metals I, Topics in Applied Physics, Vol. 28 (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  2. G. Alefeld and J. Völkl, eds.,Hydrogen in Metals II, Topics in Applied Physics, Vol. 29 (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  3. O. Bernauer and C. Halene, J. Less-Common Met. 131(1987)213.

    Article  Google Scholar 

  4. L. Schlapbach, ed.,Hydrogen in Intermetallic Compounds I, Topics in Applied Physics, Vol. 63 (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  5. J. Töpler, O. Bernauer and H. Buchner, J. Materials for Energy Systems 2(1980)3.

    Google Scholar 

  6. H. Buchner, Prog. Energy Combust. Sci. 6(1980)331.

    Article  ADS  Google Scholar 

  7. R.L. Cohen and J.H. Wernick, Science 214(1981)1081.

    ADS  Google Scholar 

  8. H. Buchner and R. Povel, Int. J. Hydrogen Energy 7(1982)259.

    Google Scholar 

  9. A.J. Maeland, J. Less-Common Met. 89(1983)173.

    Google Scholar 

  10. F. Aubertin, U. Gonser, S.J. Campbell and H.-G. Wagner, Z. Metallkd. 76(1985)237.

    Google Scholar 

  11. E. Fromm and E. Gebhardt,Gase und Kohlenstoff in Metallen (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  12. R.M. van Essen and K.H.J. Buschow, J. Less-Common Met. 64(1979)277.

    Google Scholar 

  13. F. Aubertin, U. Gonser and S.J. Campbell, J. Less-Common Met. 101(1984)437.

    Article  Google Scholar 

  14. F. Aubertin, U. Gonser and S.J. Campbell, J. Phys. F14(1984)2213.

    ADS  Google Scholar 

  15. S.M. Fries, F. Aubertin, H.-G. Wagner and U. Gonser, Z. Phys. Chem. NF 145(1985)155.

    Google Scholar 

  16. D. Shaltiel, I. Jacob and D. Davidov, J. Less-Common Met. 53(1977)117.

    Article  Google Scholar 

  17. G.K. Wertheim, V. Jaccarino and J.H. Wernick, Phys. Rev. 135(1964)151.

    Article  ADS  Google Scholar 

  18. F. Aubertin, S. Abel, S.J. Campbell and U. Gonser, Hyp. Int. 41(1988)543.

    Google Scholar 

  19. R. Kuentzler and Y. Dossmann, Phys. Lett. A118(1986)213.

    ADS  Google Scholar 

  20. H. Fischer, Ph.D. Thesis, UniversitÄt des Saarlandes (1984) p. 63.

  21. H.H. Wickman, in:Mössbauer Effect Methodology, Vol. 2, ed. I.J. Gruverman (Plenum, New York, 1966) p. 39.

    Google Scholar 

  22. F. Aubertin, G.L. Whittle, S.J. Campbell and U. Gonser, Phys. Stat. Sol. (a) 104(1987)397.

    Google Scholar 

  23. S. Fayeulle and D. Treheux, Nucl. Instr. Meth. B 19/20(1987)216.

    Google Scholar 

  24. A. Cavalleri, L. Guzman, P.M. Ossi and I. Rossi, Scr. Met. 20(1986)37.

    Article  Google Scholar 

  25. E. Johnson, A. Johansen, L. Sarholt-Kristensen and L. Grabaek, Nucl. Instr. Meth. B 19/20 (1987)190.

    Google Scholar 

  26. G. Wagner, R. Leutenecker, T. Louis and U. Gonser, Hyp. Int. 42(1988)1017.

    Google Scholar 

  27. C.A. Dos Santos, M. Behar, J.P. De Souza and I.J.R. Baumvol, Nucl. Instr. Meth. 209/210(1983)907.

    Google Scholar 

  28. R.G. Vardiman, R.N. Bolster and I.L. Singer, in:Metastable Materials Formation by Ion Implantation, ed. S.T. Picraux and W.J. Choyke (North-Holland, New York, 1982).

    Google Scholar 

  29. R.G. Vardiman and I.L. Singer, Mat. Lett. 2(1983)150.

    Article  Google Scholar 

  30. P. Schaaf, Ph. Bauer and U. Gonser, Z. Metallkd., submitted.

  31. L.H. Schwartz and D. Chandra, Phys. Stat. Sol. 45(1971)201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubertin, F., Abel, S., Wagner, G. et al. Application of Mössbauer spectroscopy to physical metallurgy: The role of light interstitial elements. Hyperfine Interact 47, 379–398 (1989). https://doi.org/10.1007/BF02351619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02351619

Keywords

Navigation