Advertisement

Bioscience Reports

, Volume 12, Issue 2, pp 115–122 | Cite as

Membrane vesicles from brown adipose tissue: A tool for the study of amino acid transport. The case of L-alanine

  • A. Rodríguez-Martín
  • N. Bel
  • X. Remesar
Article
  • 7 Downloads

Abstract

A density gradient method is used to isolate membrane vesicles from brown adipose tissue. These respond to changes in osmolarity and show the classical overshoot pattern when L-alanine uptake is assayed. Transport is shown to be effected by two components: a linear (Kd=0.498 min−1) and Na+-dependent saturable component (Km=2.3 mM) and a Vmax=19.9 pmol/μg protein·min). This pattern is similar to that shown by cells isolated from brown adipose tissue.

Key Words

alanine brown adipose membrane vesicles transport 

Abbreviations

MeAIB

Methyl-aminoisobutyric acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christensen, H. N. (1982)Physiol. Rev. 62:1193–1233.Google Scholar
  2. 2.
    Christensen, H. N. (1989)Physiol. Rev. 70:43–77.Google Scholar
  3. 3.
    Felman, M., LeCam, A., Kitabgi, P., Rey, J. F. and Freychet, P. (1979)J. Biol. Chem. 254:401–407.Google Scholar
  4. 4.
    Kristensen, L. O., Sestoff, L. and Folke, M. (1983)Am. J. Physiol. 244:6491–6500.Google Scholar
  5. 5.
    Van Amelsvoort, J. M. M., Sips, H. J. and Van Dam, K. (1978)Biochem. J. 174: 1083–1086.Google Scholar
  6. 6.
    Sips, H. J. and Van Dam, K. (1981)J. Membrane Biol. 62:231–237.CrossRefGoogle Scholar
  7. 7.
    Salloum, R. H., Souba, W. W., Fernández, A. and Stevens, B. K. (1990)J. Surg. Res. 48:635–638.CrossRefGoogle Scholar
  8. 8.
    Ramachandran, C., Chan, M. and Brunette, M. (1991)Biochem. Cell Biol. 69:109–114.Google Scholar
  9. 9.
    Kudo, Y. and Boyd, C. A. R. (1990)Biochim. Biophys. Acta 1021:169–174.Google Scholar
  10. 10.
    López-Soriano, F. J. and Alemany, M. (1990)Biochim. Biophys. Acta 1010:338–341.Google Scholar
  11. 11.
    Rodríguez-Martín, A. and Remesar, X. (1991)Biosci. Rep. 11:65–71.CrossRefGoogle Scholar
  12. 12.
    Felipe, A., Remesar, X. and Pastor-Anglada, M. (1989)Pediatr. Res. 26:448–451.Google Scholar
  13. 13.
    Lowry, O. H., Rosebrough, N. J., Farr, L. and Randall, N. J. (1951)J. Biol. Chem. 193:265–275.Google Scholar
  14. 14.
    Aronson, N. N. and Touster, O. (1974) In:Methods in Enzymology (S. Fleischer and L. Packer Eds.) Academic Press, New York, vol. XXXI, pp. 90–102.Google Scholar
  15. 15.
    Rafael, J. (1983) In:Methods of enzymatic analysis (H. U. Bergmeyer Ed.) Verlag Chimie, Basel, 3rd edition, vol. III, pp. 266–283.Google Scholar
  16. 16.
    Carroll, M. (1978)Biochem. J. 173:191–196.Google Scholar
  17. 17.
    Baginski, E. S., Foa, P. P. and Zak, B. (1974) In:Methods of enzymatic analysis (H. U. Bergmeyer Ed.) Academic Press, New York, 2nd edition, pp. 876–880.Google Scholar
  18. 18.
    Masters, B. S. S., Williams, C. H. and Kami, H. (1967) In:Methods in enzymology (R. W. Esatbrook and M. E. Pullman Eds.) Academic Press, New York, vol X, pp. 565–573.Google Scholar
  19. 19.
    Giacobino, J. P. (1979)J. Supramolec. Structure 11:445–449.Google Scholar
  20. 20.
    Greco-Perotto, R., Assimacopoulus-Jeannet, F. and Jeanrenaud, B. (1987)Biochem. J. 247: 63–68.Google Scholar
  21. 21.
    Pastor-Anglada, M., Remesar, X. and Bourdel, G. (1987)Am. J. Physiol. 252:E408-E413.Google Scholar
  22. 22.
    Rosenthal, N. R., Jacob, R. and Barret, E. (1985)Am. J. Physiol. 248:E581-E587.Google Scholar
  23. 23.
    Kilberg, M. S. (1982)J. Membrane Biol. 69:1–12.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • A. Rodríguez-Martín
    • 1
  • N. Bel
    • 1
  • X. Remesar
    • 1
  1. 1.Unitat de Bioquímica i Biologia Molecular B. Departament de Bioquímica i FisiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations