Advertisement

Medical and Biological Engineering and Computing

, Volume 43, Issue 5, pp 589–598 | Cite as

Robust and self-tuning blood flow control during extracorporeal circulation in the presence of system parameter uncertainties

Article

Abstract

Three different discrete controllers were designed and tuned to be used in conjunction with a rotary blood pump during cardiopulmonary heart-lung support. The controllers were designed to operate in both steady and pulsatile modes. The system and methods were tested in a circulatory haemodynamic simulator. To guarantee stable control of the non-linear circulatory system in the presence of patient parameter uncertainties, a proportional plus integral (PI) and an H controller were robustly tuned, using a non-linear time-varying model. (H refers to the Hardy space, the set of bounded functions, analytic in the right half plane. The H controler is the solution to the H norm optimisation problem.) A self-tuning general predictive controller (GPC), together with an adaptive Kalman filter (KF) estimator, was compared with the two robustly tuned controllers. The closed-loop blood flow control circuit was set up in simulation routines first. The blood flow controllers were validated in a circulatory hydrodynamic simulator (MOCK) combined with a rotary blood pump. Parameters of the system simulator were changed continuously, and the controllers were tested over a wide range of different operating points. Disturbances in the form of discontinuous additive parameter uncertainties were applied. The closed-loop systems remained robustly stable. The robustly tuned H controller showed the best control performance, in contrast to the GPC controller, which was near instability in regions of strongly varying non-linear system gain. Compared with the H controller, the PI controller showed slightly worse behaviour, but the closed-loop response was acceptable, even in regions of strongly varying non-linear system gain and during pulsatile perfusion. The rotary blood pump could provide stationary and pulsatile perfusion under control conditions. Controlled variables were hereby mean blood flow, pulsatility index and heart rate. All three controllers were developed for an arterial mean flow of 0–6 l min−1 and a heart rate of up to 70 beats per minute. Pulsatile closed-loop perfusion could provide up to 30 mmHg pressure variation in the simulated ascending aorta at a mean flow of 3l min−1.

Keywords

Control Non-linear systems Circulatory simulator Aortic blood flow control Discrete Robust 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anbe, J., Nakajima, H., Ogura, Y., Ozeki, M., Mitsuishi, T., Akasaka, T., andTobi, T. (1992a): ‘Development of a computerregulated extracorporeal circulation system’,Artif. Organs Today,2, pp. 117–125Google Scholar
  2. Anbe, J., Tobi, T., Nakajima, H., Akasaka, T. and OKINAGA, K. (1992b): ‘Microcomputer-based automatic regulation of extracorporeal circulation: a trial for the application of fuzzy inference’,Artif. Organs,16, pp. 532–538Google Scholar
  3. Avanzolini, G., Barbini, P., Capello, A., andCevenini, G. (1988): ‘Cades simulation of the closed-loop cardiovascular system’,Int. J. Biomed. Comput.,22, pp. 39–49CrossRefGoogle Scholar
  4. Avolio, A. P. (1980): ‘Multi-branched model of the human arterial system’,Med. Biol. Eng. Comput.,18, pp. 709–718Google Scholar
  5. Bauernschmitt, R., Naujokat, E., Mehmanesh, H., Schulz, S., Vahl, C. F., Hagl, S., andLange, R. (1999): ‘Mathematical modelling of extracorporeal circulation: simulation of different perfusion regimens’Perfusion,14, pp. 321–330Google Scholar
  6. Beppu, T., Imai, Y., andFukui, Y. (1992): ‘Computer-controlled cardiopulmonary bypass system’,Syst. Comput. Jpn.,23, pp. 74–84Google Scholar
  7. Beppu, T., Imai, Y., andFukui, Y. (1995): ‘A computerized control system for cardiopulmonary bypass’,J. Thorac. Cardiovasc. Surg.,109, pp. 428–438Google Scholar
  8. Boschetti, F., Montevecchi, F. M., andFumero, R. (1997): ‘Virtual extracorporeal circulation process’,Int. J. Artif. Organs,20, pp. 341–351Google Scholar
  9. Clarke, D. W., Mohtadi, C., andTuffs, P. S. (1987): ‘Generalized predictive control-Part I/II’,Automatica,23, pp. 137–140Google Scholar
  10. De Pater, L. (1966): ‘An electrical analogue of the human circulatory system’,PhD thesis, University of GroningenGoogle Scholar
  11. Frank, O. (1899): ‘Die Grundform des arteriellen Pulses’,Z. Biol.,37, pp. 483–526Google Scholar
  12. Fukui, Y., Tsuchiya, K., andImai, Y. (1982): ‘Computer controlled extracorporeal circulation (ECC) with pulsatile perfusion for an infant’,Trans. Am. Soc. Artifn. Intern. Organs,28, pp. 133–137Google Scholar
  13. Göbel, C., Arvand, A., Eilers, R., Marselle, O., Bals, C., Meyns, B., Flameng, W., Rau, G., andReul, H. (2001): ‘Development of the MEDOS/HIA DeltaStream extracorporeal rotary blood pump’,Artif. Organs,25, pp. 358–365Google Scholar
  14. Gourlay, T., andTaylor, K.M. (1994): ‘Pulsatile flow and membrane oxygenators’,Perfusion,9, pp. 189–196Google Scholar
  15. Gundel, W., Cherry, G., Rajagopalan, B., Tan, L.-B., Lee, G., andSchultz, D. (1981): ‘Aortic input impedance in man: acute response to vasodilator drugs’,Circulation,63, pp. 1305–1314Google Scholar
  16. Hettrick, D. A., Pagel, P.S., andWarltier, D. C. (1995): ‘Differential effects of isoflurane and halothane on aortic input impedance quantified using a three-element Windkessel model’,Anesthesiology,83, pp. 361–373Google Scholar
  17. Kalman, R. E. (1960): ‘A new approach to linear filtering and prediction problems’,Trans. ASME J. Basic Eng.,82, pp. 35–45Google Scholar
  18. Kay, P. H., andMunsch, C. M. (2004): ‘Techniques in extracorporeal circulation’, (Arnold, London, U.K., 2004)Google Scholar
  19. Latson, T. W., Hunter, W. C., Katoh, N., andSagawa, K. (1988): ‘Effect of nitroglycerin on aortic impedance, diameter, and pulsewave velocity’,Circ. Res.,62, pp. 884–890Google Scholar
  20. Lowe, D., Hettrick, D. A., Pagel, P. S., andWarltier, D. C. (1996): ‘Propofol alters left ventricular afterload as evaluated by aortic input impedance in dogs’,Anesthesiology,84, pp. 368–376Google Scholar
  21. Lunze, J. (2002): ‘Regelungstechnik 2’, (Springer-Verlag, Berlin, Germany, 2002)Google Scholar
  22. McInnis, B., Guo, Z-W., Lu, P., andWang, J.-C. (1985): ‘Adaptive control of left ventricular bypass assist devices’,IEEE Trans. Automat. Contr.,30, pp. 322–329CrossRefGoogle Scholar
  23. Nagel, M. (2004): ‘Aufbau eines Versuchsstandes zur Simulation des menschlichen Kreislaufs unter den Bedingungen der extrakorporalen membranoxygenation (ECMO)’.Master Thesis, Dortmund UniversityGoogle Scholar
  24. Nelles, O. (2001): ‘Nonlinear system identification’, (Springer-Verlag, Berlin, Germany, 2001)Google Scholar
  25. Nishida, H., Beppu, T., Nakajima, M., Nishinaka, T., Nakatani, H., Ihashi, K., Katsumata, T., Kitamura, M., Aomi, S., Endo, M.,et al. (1995): ‘Development of an autoflow cruise control system for a centrifugal pump’,Artif. Organs,19, pp. 713–718Google Scholar
  26. Ogata, K. (1987): ‘Discrete —time control systems’ (Prentice — Hall, New Jersey, USA, 1987)Google Scholar
  27. Pennati, G., Fiore, G. B., Laganá, K., andFumero, R. (2004): ‘Mathematical modelling of fluid dynamics in pulsatile cardiopulmonary bypass’,Artif. Organs,28, pp. 196–209CrossRefGoogle Scholar
  28. Pepine, C. J., Nichols, W. W., Curry, R. C., andConti, C. R. (1979): ‘Aortic input impedance during nitroprusside infusion. A reconsideration of afterload reduction and beneficial action’,J. Clin. Invest.,64, pp. 643–654Google Scholar
  29. Reul, H., Minamitani, H., andRunge, J (1975): ‘A hydraulic analog of the systemic and pulmonary circulation for testing artificial hearts’,Proc. ESAO,2, pp. 120–127Google Scholar
  30. Rideout, V. C. (1972): ‘Cardiovascular system simulation in biomedical engineering education’,IEEE Trans. Biomed. Eng.,19, pp. 101–107Google Scholar
  31. Schwarzhaupt, A., andKiencke, U. (1998): ‘Entwicklungen in der Automatisierung von Herz-Lungen-Maschinen’,Automatisierung-stechnische Praxis,40, pp. 21–24Google Scholar
  32. Schwarzhaupt, A., Qaqunda, B., andKiencke, U. (1998): ‘Entwurf eines prädiktiven MIMO-Reglers für Herz-Lungen-Maschinen auf der Grundlage eines Modells der extrakorporalen Zirkulation’,Biomed. Tech.,43, pp. 336–337Google Scholar
  33. Schima, H., Honigschnabel, J., Trubel, W., andThoma, H. (1990): ‘Computer simulation of the circulatory system during support with a rotary blood pump’,ASAIO Trans.,36, pp. 252–254Google Scholar
  34. Segers, P., Dubois, F., De Wachter, D., andVerdonck, P. (1998): ‘Role and Relevancy of a Cardiovascular Simulator’,CVE.,3, pp. 48–56Google Scholar
  35. Shimooka, T., Mitamura, Y., andYuhta, T. (1991): ‘Investigation of parameter estimator and adaptive controller for assist pump by computer simulation’,Artif. Organs,15, pp.119–128Google Scholar
  36. Snyder, M. F., Rideout, V. C., andHillestad, R. J. (1968): ‘Computer modelling of the human systemic arterial tree’,J. Biomech.,1, pp. 341–353CrossRefGoogle Scholar
  37. Soejima, K., Nagase, Y., Ishihara, K., Takanashi, Y., Imai, Y., Tsuchiya, K., andFukui, Y. (1983): ‘Computer-assisted automatic cardiopulmonary bypass system for infants’, inAtsumi, K., Maekawa, M., andOta, K. (Eds). ‘Progress in artificial organs’ (ISAO Press, Cleveland, OH, USA, 1983), pp. 918–922Google Scholar
  38. Womersley, J. R. (1957): ‘An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries’.WADC Technical Report, pp. 56–614Google Scholar
  39. Wright, G. (1988): ‘The hydraulic power outputs of pulsatile and nonpulsatile cardiopulmonary bypass pumps’,Perfusion,3, pp. 251–262Google Scholar
  40. Yih-Choung, Y., Boston, J. R., Simaan, M. A., andAntaki, J. F. (1998): ‘Estimation of systemic vascular bed parameters for artificial heart control’,IEEE Trans. Automat. Control. 43, pp. 765–778Google Scholar
  41. Zames, G. (1981): ‘Feedback and optimum sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses’,IEEE Trans. Automat. Control,26, pp. 301–320CrossRefMATHMathSciNetGoogle Scholar
  42. Zames, G., andFrancis, B. (1983): ‘Feedback, minimax sensitivity, and optimum robustness’,IEEE Trans. Autom. Control,28, pp. 585–601MathSciNetGoogle Scholar

Copyright information

© IFMBE 2005

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, School of MedicineRuhr-UniversityBochumGermany

Personalised recommendations