Advertisement

Effects of substrate characteristics on bone cell response to the mechanical environment

  • Y. Yang
  • J. Magnay
  • L. Cooling
  • J. J. Cooper
  • A. J. El Haj
Special Section: Biomechanical Interactions in Tissue Engineering and Surgical Repair (BITES)

Abstract

The effect of substrate characteristics on primary human bone cell response to mechanical loading was investigated in this study. The substrates comprised organic and inorganic materials with a range of hydrophilic and hydrophobic features. Substrate surface topography varied from smooth to particulate to porous. It was found that hydrophilic substrates such as borosilicate glass facilitated bone cell adhesion, in contrast to hydrophobic substrates such as poly(L-lactic acid), in which clumps of cells grew unevenly across the substrate surface. All primary bone cells cultured in the various collagen-coated substrates were responsive to mechanical stimulation. The study showed that, at a low strain level of 1000μstrain, mechanical stimulation enhanced bone cell differentiation rather than proliferation. Coating the substrates with collagen type l enhanced cell adhesion and promoted an elongated cell morphology, indicating that the presence of specific binding sites on a substrate may be more important than its hydrophilic properties, regardles of the substrate topography.

Keywords

Substrate Bone cells Adhesion Mechanical loading Matrix production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselme, K. (2000): ‘Osteoblast adhesion on biomaterials’,Biomaterials,21, pp. 667–681Google Scholar
  2. Burger, E. H., Gregoire, M., Hagen, J. W., andVeldhuijzen, J. P. (1992): ‘Osteogenic effects of mild mechanical stress on bone cell-and organ cultures’, inDavidovitch, Z. (Ed.): ‘The biochemical mechanisms of tooth movement and craniofacial adaption’ (Ohio State University College of Dentistry, Columbus, OH, 1992), pp. 187–193Google Scholar
  3. Burger, E. H., andVeldhuijzen, J. P. (1993): ‘Influence of mechanical factors on bone formation, resorption and growthin vitro’, inHall, B. K. (Ed.): ‘Bone-bone growth, vol. 7’ (CRC Press, 1993), pp. 37–56Google Scholar
  4. Buckley, M. J., Banes, A. J., Levin, L. G., Sumpio, B. E., Sato, M., Jordan, J., Gilbert, G. W., andLink, R. (1988): ‘Osteoblasts increase their rate of division and align in response to cyclic mechanical tensionin vitro’,Bone Miner.,4, pp. 225–236Google Scholar
  5. Buschmann, M. D., Kim, Y. J., Wong, M., Frank, E., Hunziker, E. B., andGrodzinsky, A. J. (1999): ‘Stimulatio of aggrecan synthesis in cartilage explants by cyclic loading is located to regions of high interstial fluid flow’,Arch. Biochem. Biophys.,366, pp. 1–7CrossRefGoogle Scholar
  6. Cacou, C., Palmer, D., Lee, D. A., Bader, D. L., andShelton, J. C. (2000): ‘A system for monitoring the response of uniaxial strain on cell seeded collagen gels’,Med. Eng. Phys.,22, pp. 327–333CrossRefGoogle Scholar
  7. Cavalcanti-Adam, E. A., Shapiro, I. M., Composto, R. J., Macarak, E. J., andAdams, C. S. (2002): ‘RGD peptides immobilized on a mechanically deformable surface promote osteoblast differantiation’J. Bone Min. Res.,17, pp. 2130–2140Google Scholar
  8. Culp, L. A. (1978): ‘Brochemical determinants of cell adhesion’, inBronner, F. et al. (Eds.): ‘Current topics in membranes and transport, vol. 2’ (Academic Press, New York, 1998), pp. 327–396Google Scholar
  9. Davisson, T., Kunig, S., Chen, A., Sah, R., andRatcliffe, A. (2002): ‘Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage’,J. Orthop. Res.,20, pp. 842–848CrossRefGoogle Scholar
  10. El Haj, A. J., Minter, S. J., Rawlinson, S. C., Suswillo, R., andLanyon, L. E. (1990): ‘Cellular responses to mechanical loadingin vitro’,J. Bone Miner. Res.,5, pp. 923–932Google Scholar
  11. Harter, L. V., Hruska, K. A., andDuncan, R. L. (1995): ‘Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation’,Endocrinology,136, pp. 528–535CrossRefGoogle Scholar
  12. Hayman, E. G., Pierschbacher, M. D., Suzuki, S., andRuoslahti, E. (1985): ‘Vitronectin-a major cell attachment-promoting protein in fetal bovine serum’,Exp. Cell Res.,60, pp. 245–258Google Scholar
  13. Ikegame, M., Ishibashi, O., Yoshizawa, T., Shimomura, J., Komori, T., Ozawa, H., andKawashima, H. (2001): ‘Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture’,J. Bone Miner. Res.,16, pp. 24–32Google Scholar
  14. Jee, W. S. S. (2001): ‘Integrated bone tissue physiology: Anatomy and physiology’, inCowin, S. C. (Ed.): ‘Bone mechanics handbook’ (CRC Press, Boca Raton, FL, USA, 2001)Google Scholar
  15. Labarca, C., andPaigen, K. (1980): ‘A simple, rapid and sensitive DNA assay procedure’,Anal. Biochem.,102, pp. 344–352CrossRefGoogle Scholar
  16. Labat, B., Chepda, T., Frey, J., Rieu, J., Aurelle, J. L., Douet, M., Alexandre, C., andChamson, A. (2000): ‘Practice of a testing bench to study the effects of cyclic stretching on osteoblastorthopaedic ceramic interactions’,Biomaterials,21, pp. 1275–1281CrossRefGoogle Scholar
  17. Laemmi, U. K. (1970): ‘Cleavage of structural proteins during the assembly of the head of the bacteriophage T4’,Nature,227, pp. 680–685Google Scholar
  18. Lanyon, L. E., andRubin, C. T. (1985): ‘Functional adaptation in skeletal structures’, inHildebrand, M. et al. (Eds.): ‘Functional vertebrate morphology’ (Harvard University Press, Cambridge, MA, USA, 1985), pp. 1–25Google Scholar
  19. Leblanc, A. D., Schneider, V. S., Evans, H. J., Englebertson, D. A., andKrebs, J. M. (1990): ‘Bone mineral loss and recovery after 17 weeks of bed rest’,J. Bone Miner. Res.,5, pp. 843–850Google Scholar
  20. Lee, D., andBader, D. (1997): ‘Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose’,J. Orthop. Res.,15, pp. 181–188Google Scholar
  21. Matsuura, T., Hosokawa, R., Okamoto, K., Kimoto, T., andAkagawa, Y. (2000): ‘Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium’,Biomaterials,21, pp. 1121–1127CrossRefGoogle Scholar
  22. Meikle, M. C., Reynolds, A., Sellers, J. J., andDingle, J. T. (1979): ‘Rabbit cranial suturesin vitro: A new experimental model for studying the response of fibrous joint to mechanical stress’,Calcif. Tissue Int.,28, pp. 137–144Google Scholar
  23. Meyer, A. E., Baier, R. E., Natiella, J. R., andMeenaghan, M. A. (1988): ‘Investigation of tissue/implant interactions during the first two hours of implantation’,J. Oral Implantol.,14, pp. 363–379Google Scholar
  24. Owan, I., Burr, D. B., Turner, C. H., Qiu, J., Tu Y Onyia, J. E., andDuncan, R. L. (1997): ‘Mechanotransduction in bone: Osteoblasts are more responsive to fluid forces than mechanical strain’,Am. J. Physiol.,273, pp. c810–815Google Scholar
  25. Peake, M. A., Cooling, L. M., Magnay, J. L., Thomas, P. B. M., andEl Haj, A. J. (2000): ‘Cellular responses to mechanical stress: Selected contribution: Regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells’,J. Appl. Physio.,89, pp. 2498–2507Google Scholar
  26. Peake, M. A. (2001): ‘Regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells’. PhD thesis, Keele University, UK.Google Scholar
  27. Puleo, D. A., Holleran, L. A., Doremus, R. H., andBizios, R. (1991): ‘Osteoblast responses to orthopaedic implant materials in vitro’,J. Biomed. Mater. Res.,25, pp. 711–723CrossRefGoogle Scholar
  28. Puleo, D. A., andBizios, R. (1992): ‘Formation of focal cotacts by osteoblasts cultured on orthopaedic biomaterials’,J. Biomed. Mater. Res.,26, pp. 291–301CrossRefGoogle Scholar
  29. Rubin, C. T., andLanyon, L. E. (1984): ‘Regulation of bone formation by applied dynamic loads’,J. Bone Joint Surg. Am.,66, pp. 397–402Google Scholar
  30. Ruoslahti, E., andPierschbacher, M. D. (1987): ‘New perspectives in cell adhesion: RGD and integrins’,Science,238, pp. 491–497Google Scholar
  31. Sammons, R. L., El Haj, A. J., andMarquis, P. M. (1994): ‘Novel culture procedure permitting the synthesis of proteins by rat calvarial cells cultured on hydroxyapatite particles to be quantified’,Biomaterials,15, pp. 536–542Google Scholar
  32. Schakenraad, J. M., Busscher, H. J., Wildevuur, C. R. H., andArends, J. (1986): ‘The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins’,J. Biomed. Mater. Res.,20, pp. 773–784CrossRefGoogle Scholar
  33. Schneider, G., andBurridge, K. (1994): ‘Formation of focal adhesions by osteoblasts adhering to different substrata’,Exp. Cell Res.,214, pp. 264–269CrossRefGoogle Scholar
  34. Skerry, T. M., Suswillo, R., El Haj, A. J., Ali, N. N., Dodds, R. A., andLanyon, L. E. (1990): ‘Load induced proteoglycan orientation in bone tissuein vivo andin vitro’,Calcif. Tissue Int.,46, pp. 318–326Google Scholar
  35. Somjen, D., Binderman, E. H., Birger, I., andHarell, A. (1980): ‘Bone remodelling induced by physical stress is prostaglandin E3 mediated’,Biochim. Biophys. Acta.,627, pp. 91–100Google Scholar
  36. Sutherland, D. H., Olshen, R., Cooper, L., andWool, S. L. (1980): ‘The development of mature gait’,J. Bone Joint Surg. Am.,62, pp. 336–353Google Scholar
  37. Tanaka, S. M., Li, J., Duncan, R. L., Yokota, H., Burr, D. B., andTurner, C. H. (2003): ‘Effects of broad frequency vibration on cultured osteoblasts’,J. Biomech.,36, pp. 73–80CrossRefGoogle Scholar
  38. Thomson, R. C., Shung, A. K., andYaszemski, M. J. (1997): ‘Polymer scaffold processing’ inLanza, R. P. et al. (Eds.): ‘Principles of Tissue Engineering’ (Academic Press, USA, 1997), pp. 251–262Google Scholar
  39. Toolan, B. C., Frenkel, S. R., Pachence, J. M., Yalowitz, L., andAlexander, H. J. (1996): ‘Effects of growth factor enhanced culture on a chondrocyte-collagen implant for cartilage repair’,Biomed. Mater. Res.,31, pp. 273–280CrossRefGoogle Scholar
  40. Turner, C. H., Forwood, M. R., andOtter, M. W. (1994): ‘Mechanotransduction in bone: Do bone cells act as sensors of fluid flow?’,FASEB J.,8, pp. 875–878Google Scholar
  41. Walker, L. M., Publicover, S. J., Preston, M. R., Said Ahmed, M. A., andEl Haj, A. J. (2000): ‘Calcium-channel activation and matrix protein upregulation in bone cells in response to mechanical strain’,J. Cell Biochem.,79, pp. 648–661CrossRefGoogle Scholar
  42. Yashiki, S., Umegaki, R., Kino-Oka, M., andTaya, M. (2001): ‘Evaluation of attachment and growth of anchorage-dependent cells on culture surfaces with type I collagen coating’,J. Biosci. Bioeng.,92, pp. 385–388CrossRefGoogle Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  • Y. Yang
    • 1
  • J. Magnay
    • 1
  • L. Cooling
    • 1
  • J. J. Cooper
    • 2
  • A. J. El Haj
    • 1
  1. 1.Centre for Science & Technology in Medicine, School of MedicineKeele University/North Staffordshire HospitalStoke-on-TrentUK
  2. 2.BiocompositesEtruscan StreetStoke-on-TrentUK

Personalised recommendations