Skip to main content
Log in

Single-trabecula building block for large-scale finite element models of cancellous bone

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript


Recent development of high-resolution imaging of cancellous bone allows finite element (FE) analysis of bone tissue stresses and strains in individual trabeculae. However, specimen-specific stress/strain analyses can include effects of anatomical variations and local damage that can bias the interpretation of the results from individual specimens with respect to large populations. This study developed a standard (generic) ‘building-block’ of a trabecula for large-scale FE models. Being parametric and based on statistics of dimensions of ovine trabeculae, this building block can be scaled for trabecular thickness and length and be used in commercial or custom-made FE codes to construct generic, large-scale FE models of bone, using less computer power than that currently required to reproduce the accurate micro-architecture of trabecular bone. Orthogonal lattices constructed with this building block, after it was scaled to trabeculae of the human proximal femur, provided apparent elastic moduli of ∼ 150 MPa, in good agreement with experimental data for the stiffness of cancellous bone from this site. Likewise, lattices with thinner, osteoporotic-like trabeculae could predict a reduction of ∼30% in the apparent elastic modulus, as reported in experimental studies of osteoporotic femora. Based on these comparisons, it is concluded that the single-trabecula element developed in the present study is well-suited for representing cancellous bone in large-scale generic FE simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • An, Y. H., andFriedman, R. J. (1999): ‘Animal models in orthopaedic research’ (CRC Press, Boca Raton, Florida, USA, 1999)

    Google Scholar 

  • Anderson, I. A., andCarman, J. B. (2000): ‘How do changes to plate thickness, length, and face-connectivity affect femoral cancellous bone's density and surface area? An investigation using regular cellular models’,J. Biomech.,33, pp. 327–335

    Article  Google Scholar 

  • Augat, P., Link, T., Lang, T. F., Lin, J. C., Majumdar, S., andGenant, H. K. (1998): ‘Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations’,Med. Eng. Phys.,20, pp. 124–131

    Article  Google Scholar 

  • Banse, X., Delloye, C., Cornu, O., andBourgois, R. (1996): ‘Comparative left-right mechanical testing of cancellous bone from normal femoral heads’,J. Biomech.,29, pp. 1247–1253

    Article  Google Scholar 

  • Bay, B. K., Yerby, S. A., McLain, R. F., andToh, E. (1999): ‘Measurement of strain distributions within vertebral body sections by texture correlation’,Spine,24, pp. 10–17

    Article  Google Scholar 

  • Brown, S. J., Pollintine, P., Powell, D. E., Davie, M. W., andSharp, C. A. (2002): ‘Regional differences in mechanical and material properties of femoral head cancellous bone in health and osteoarthritis’,Calcif. Tissue Int.,71, pp. 227–234

    Article  Google Scholar 

  • Fajardo, R. J., andMuller, R. (2001): ‘Three-dimensional analysis of nonhuman primate trabecular architecture using micro-computed tomography’,Am. J. Phys. Anthropol.,115, pp. 327–336

    Article  Google Scholar 

  • Gefen, A., andSeliktar, R. (2004): ‘Comparison of the trabecular architecture and the isostatic stress flow in the human calcaneus’,Med. Eng. Phy.,26, pp. 119–129

    Article  Google Scholar 

  • Gibson, L. J. (1985): ‘The mechanical behaviour of cancellous bone’,J. Biomech.,18, pp. 317–328

    Article  Google Scholar 

  • Guldberg, R. E., Hollister, S. J., andCharras, G. T. (1998): ‘The accuracy of digital image-based finite element models’,J. Biomech. Eng.,120, pp. 289–295

    Article  Google Scholar 

  • Homminga, J., McCreadie, B. R., Ciarelli, T. E., Weinans, H., Goldstein, S. A., andHuiskes, R. (2002): ‘Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level’,Bone,30, pp. 759–764

    Article  Google Scholar 

  • Kim, H. S., andAl-Hassani, S. T. (2002): ‘A morphological model of vertebral trabecular bone’,J. Biomech.,35, pp. 1101–1114

    Article  Google Scholar 

  • Kohles, S. S., andRoberts, J. B. (2002): ‘Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties’,J. Biomech. Eng.,124, pp. 521–526

    Article  Google Scholar 

  • Kowalczyk, P. (2003): ‘Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells’,J. Biomech.,36, pp. 961–972

    Article  Google Scholar 

  • Krischak, G. D., Augat, P., Wachter, N. J., Kinzl, L., andClaes, L. E. (1999): ‘Predictive value of bone mineral density and Singh index for thein vitro mechanical properties of cancellous bone in the femoral head’,Clin. Biomech.,14, pp. 346–351

    Article  Google Scholar 

  • Li, B., andAspden, R. M. (1997): ‘Material properties of bone from the femoral neck and calcar femorale of patients with osteoporosis or osteoarthritis’,Osteoporosos Int.,7, pp. 450–456

    Article  Google Scholar 

  • Morgan, E. F., Bayraktar, H. H., andKeaveny, T. M. (2003): ‘Trabecular bone modulus-density relationships depend on anatomic site’,J. Biomech.,36, pp. 897–904

    Article  Google Scholar 

  • Puzas, J. E. (1996): ‘Osteoblast cell biology — lineage and functions’, inFavus, M. J. (Ed.): ‘Primer on the metabolic bone diseases and disorders of mineral metabolism, 3rd edn’ (Lippincot Raven, 1996), pp. 11–16

  • Rho, J. Y., Ashman, R. B., andTurner, C. H. (1993): ‘Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements’,J. Biomech.,26, pp. 111–119

    Article  Google Scholar 

  • Townsend, P. R., Rose, R. M., andRadin, E. L. (1975): ‘Buckling studies of single human trabeculae’,J. Biomech.,8, pp. 199–201

    Article  Google Scholar 

  • van Rietbergen, B., Weinans, H., Huiskes, R., andOdgaard, A. (1995): ‘A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models’,J. Biomech.,28, pp. 69–81

    Article  Google Scholar 

  • van Rietbergen, B., Muller, R., Ulrich, D., Ruegsegger, P., andHuiskes, R. (1999): ‘Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions’,J. Biomech.,32, pp. 443–451

    Article  Google Scholar 

  • van Rietbergen, B., Huiskes, R., Eckstein, F., andRuegsegger, P. (2003): ‘Trabecular bone tissue strains in the healthy and osteoporotic human femur’,J. Bone Miner. Res.,18, pp. 1781–1788

    Article  Google Scholar 

  • Viceconti, M., Ansaloni, M., Baleani, M., andToni, A. (2003): ‘The muscle standardized femur: a step forward in the replication of numerical studies in biomechanics’,Proc. Inst. Mech. Eng.,217, pp. 105–110

    Article  Google Scholar 

  • Werner, H. J., Martin, H., Behrend, D., Schmitz, K. P., andSchober, H. C. (1996): ‘The loss of stiffness as osteoporosis progresses’,Med. Eng. Phys.,18, pp. 601–606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Gefen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagan, D., Be'ery, M. & Gefen, A. Single-trabecula building block for large-scale finite element models of cancellous bone. Med. Biol. Eng. Comput. 42, 549–556 (2004).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: