Advertisement

Methods for estimating muscle fibre conduction velocity from surface electromyographic signals

  • D. Farina
  • R. Merletti
Review

Abstract

The review focuses on the methods currently available for estimating muscle fibre conduction velocity (CV) from surface electromyographic (EMG) signals. The basic concepts behind the issue of estimating CV from EMG signals are discussed. As the action potentials detected at the skin surface along the muscle fibres are, in practice, not equal in shape, the estimation of the delay of propagation (and thus of CV) is not a trivial task. Indeed, a strictly unique definition of delay does not apply in these cases. Methods for estimating CV can thus be seen as corresponding to specific definitions of the delay of propagation between signals of unequal shape. The most commonly used methods for CV estimation are then reviewed. Together with classic methods, recent approaches are presented. The techniques are described with common notations to underline their relationships and to highlight when an approach is a generalisation of a previous one or when it is based on new concepts. The review identifies the difficulties of CV estimation and underlines the issues that should be considered by the investigator when selecting a particular method and detection system for assessing muscle fibre CV. The many open issues in CV estimation are also presented.

Keywords

Electromyography Delay estimators Spatial filters End-of-fibre components Conduction velocity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendt-Nielsen, L., andMills, K. R. (1985): ‘The relationship between mean power frequency of the EMG spectrum and muscle fibre conduction velocity’,Electroencephalogr: Clin. Neurophysiol.,60, pp. 130–134CrossRefGoogle Scholar
  2. Arendt-Nielsen, L., andZwarts, M. (1989): ‘Measurement of muscle fibre conduction velocity in humans: techniques and applications’,J. Clin. Neurophysiol.,6, pp. 173–190CrossRefGoogle Scholar
  3. Arendt-Nielsen, L., Mills, K. R., andForster, A. (1989): ‘Changes in muscle fibre conduction velocity, mean power frequency, and mean EMG voltage during prolonged submaximal contractions’,Muscle Nerve,12, pp. 493–497CrossRefGoogle Scholar
  4. Arabadzhiev, T. I., Dimitrov, G. V., andDimitrova, N. A. (2003): ‘Simulation analysis of the ability to estimate motor unit propagation velocity non-invasively by different two-channel methods and types of multi-electrodes’,J. Electromyogr. Kinesiol.,13, pp. 403–415CrossRefGoogle Scholar
  5. Bigland-Ritchie, B., Donovan, E. F., andRoussos, C. S. (1981): ‘Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts’,J. Appl. Physiol.,51, pp. 1300–1305Google Scholar
  6. Bonato, P., Balestra, G., Knaflitz, M., andMerletti, R. (1990): ‘Comparison between muscle fibre conduction velocity estimation techniques: spectral matching versus crosscorrelation’. Proc. 8th ISEK Congress, pp. 19–22Google Scholar
  7. Davies, S. W., andParker, P. A. (1987): ‘Estimation of myoelectric conduction velocity distribution’,IEEE Trans. Biomed. Eng.,34, pp. 365–374CrossRefGoogle Scholar
  8. Dimitrov, G. V., andDimitrova, N. A. (1974): ‘Extracellular potential field of a single striated muscle fibre immersed in anisotropic volume conductor’,Electromyogr. Clin. Neurophysiol.,14, pp. 423–436Google Scholar
  9. Dimitrov, G. V., Lateva, Z. C., andDimitrova, N. A. (1988): ‘Effects of changes in asymmetry, duration and propagation velocity of the intracellular potential on the power spectrum of extracellular potentials produced by an excitable fibre’,Electromyogr. Clin. Neurophysiol.,28, pp. 93–100Google Scholar
  10. Dimitrova, N. A., andDimitrov, G. V. (2003): ‘Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies’,J. Electromyogr. Kinesiol.,13, pp. 13–36CrossRefGoogle Scholar
  11. Farina, D., andMerletti, R. (2000): ‘Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions’,J. Electromyogr. Kinesiol.,10, pp. 337–349CrossRefGoogle Scholar
  12. Farina, D., Fortunato, E., andMerletti, R. (2000): ‘Noninvasive estimation of motor unit conduction velocity distribution using linear electrode arrays’,IEEE Trans. Biomed. Eng.,47, pp. 380–388CrossRefGoogle Scholar
  13. Farina, D., Muhammad, W., Fortunato, E., Meste, O., Merletti, R., andRix, H. (2001): ‘Estimation of single motor unit conduction velocity from surface electromyogram signals detected with linear electrode arrays’,Med. Biol. Eng. Comput.,39, pp. 225–236CrossRefGoogle Scholar
  14. Farina, D., Fosci, M., andMerletti, R. (2002a): ‘Motor unit recruitment strategies investigated by surface EMG variables’,J. Appl. Physiol.,92, pp. 235–247CrossRefGoogle Scholar
  15. Farina, D., Arendt-Nielsen, L., Merletti, R., andGraven-Nielsen, T. (2002b): ‘Assessment of single motor unit conduction velocity during sustained contractions of the tibialis anterior muscle with advanced spike triggered averaging’,J. Neurosci. Meth.,30, pp. 1–12CrossRefGoogle Scholar
  16. Farina, D., andMerletti, R. (2003): ‘A novel approach for estimating muscle fibre conduction velocity by spatial and temporal filtering of surface EMG signals’,IEEE Trans. Biomed. Eng.,50, pp. 1340–1351CrossRefGoogle Scholar
  17. Farina, D., Pozzo, M., Merlo, E., Bottin, A., andMerletti, R. (2004a): ‘Assessment of muscle fibre conduction velocity from surface EMG signals during fatiguing dynamic contractions’,IEEE Trans. Biomed. Eng., (in press)Google Scholar
  18. Farina, D., Arendt-Nielsen, L., Merletti, R., andGraven-Nielsen, T. (2004b). ‘The effect of experimental muscle pain on motor unit firing rate and conduction velocity’,J. Neurophysiol.,91, pp. 1250–1259CrossRefGoogle Scholar
  19. Farina, D., Zagari, D., Gazzoni, M., andMerletti, R. (2004c): ‘Reproducibility of muscle fibre conduction velocity estimates using multi-channel surface EMG techniques’,Muscle Nerve,29, pp. 282–291CrossRefGoogle Scholar
  20. Farina, D., Mesin, L., Martina, S., andMerletti, R. (2004d): ‘A surface EMG generation model with multi-layer cylindrical description of the volume conductor’,IEEE Trans. Biomed. Eng.,51, pp. 415–426CrossRefGoogle Scholar
  21. Farina, D., Mesin, L., Martina, S., andMerletti, R. (2004e): ‘Comparison of spatial filter selectivity in surface myoelectric signal detection—Influence of the volume conductor model’,Med. Biol. Eng. Comput.,42, pp. 114–120CrossRefGoogle Scholar
  22. Farina, D., Merletti, R., andEnoka, R. M. (2004f): ‘The surface electromyogram as a window into the nervous system-not exactly’,J. Appl. Physiol.,96, pp. 1486–1495CrossRefGoogle Scholar
  23. Farina, D., Mesin, L., andMartina, S. (2004g): ‘Advances in surface electromyographic signal simulation with analytical and numerical descriptions of the volume conductor’,Med. Biol. Eng. Comput.,42, pp. 467–476CrossRefGoogle Scholar
  24. Farina, D., andMerletti, R. (2004): ‘Estimation of average muscle fibre conduction velocity from two-dimensional surface EMG recordings’,J. Neurosci. Meth.,134, pp. 199–208CrossRefGoogle Scholar
  25. Gonzalez-Cueto, J. A., andParker, P. A. (2002): ‘Deconvolution estimation of motor unit conduction velocity distribution’,IEEE Trans. Biomed. Eng.,49, pp. 955–962CrossRefGoogle Scholar
  26. Gydikov, A., Gerilovsky, L., andDimitrov, G. V. (1976a): ‘Volume conducted motor unit potentials in human triceps surae’,Electromyogr: Clin. Neurophysiol.,16, pp. 569–586Google Scholar
  27. Gydikov, A., Dimitrov, G., Kosarov, D., andDimitrova, N. (1976b): ‘Functional differentiation of motor units in human opponens pollicis muscle’,Exp. Neurol.,50, pp. 36–47CrossRefGoogle Scholar
  28. Gydikov, A., Kosarov, D., andDimitrov, G. V. (1979): ‘Length of the summated depolarized area and duration of the depolarizing and repolarizing processes in the motor unit under different conditions’,Electromyogr: Clin. Neurophysiol.,19, pp. 229–248Google Scholar
  29. Gydikov, A. (1981): ‘Spreading of potentials along the muscle, investigated by averaging of the summated EMG’,Electromyogr. Clin. Neurophysiol.,21, pp. 525–538Google Scholar
  30. Gydikov, A., Kostov, K., Kossev, A., andKosarov, D. (1984): ‘Estimation of the spreading velocity and the parameters of the muscle potentials by averaging of the summated electromyogram’,Electromyogr. Clin. Neurophysiol.,24, pp. 191–212Google Scholar
  31. Hogrel, J. Y., andDuchene, J. (2002): ‘Motor unit conduction velocity distribution estimation: assessment of two short-term processing methods’,Med. Biol. Eng. Comput.,40, pp. 253–259CrossRefGoogle Scholar
  32. Houtman, C. J., Stegeman, D. F., van Dijk, J. P., andZwarts, M. J. (2003): ‘Changes in muscle fibre conduction velocity indicate recruitment of distinct motor unit populations’,J. Appl. Physiol.,95, pp. 1045–1054Google Scholar
  33. Hunter, I. W., Kearney, R. E., andJones, L. A. (1987): ‘Estimation of the conduction velocity of muscle action potentials using phase and impulse response function techniques’,Med. Biol. Eng. Comput.,25, pp. 121–126CrossRefGoogle Scholar
  34. Johnson, D. H., andDuolgeon, D. E. (1993): ‘Array signal processing—Concepts and techniques’ (Prentice Hall Signal Processing series, 1993), Oppenheim, A. V. (Series Ed.)Google Scholar
  35. Lanzetta, M., Farina, D., Pozzo, M., Bottin, A., andMerletti, R. (2004): ‘Motor unit reinnervation and control properties in intrinsic muscles of a transplanted hand’. Proc. XVth ISEK Congress, Boston, (in press)Google Scholar
  36. Laterza, F., Lo Conte, L., Mattacchione, M., andMerletti, R. (1998): ‘Information in the surface EMG spectral content’,SENIAM Deliverable,6, pp. 109–116Google Scholar
  37. Lindstrom, L., Magnusson, R., andPetersén, I. (1970): ‘Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals’,Electromyography,10, pp. 341–356Google Scholar
  38. Lindstrom, L., Magnusson, R., andPetersén, I. (1971): ‘The ‘dip phenomenon’ in power spectra of EMG signals’,Electroencephalogr. Clin. Neurophysiol.,30, pp. 259–260Google Scholar
  39. Lindstrom, L., Kadefors, R., andPetersén, I. (1977): ‘An electromyographic index for localized muscle fatigue’,J. Appl. Physiol.,43, pp. 750–754Google Scholar
  40. Lindstrom, L., andMagnusson, R. (1977): ‘Interpretation of myoelectric power spectra: a model and its applications’,Proc. IEEE,65, pp. 653–662CrossRefGoogle Scholar
  41. Linssen, W. H., Stegeman, D. F., Joosten, E. M., Merks, H. J., ter Laak, H. J., Binkhorst, R. A., andNotermans, S. L. (1991): ‘Force and fatigue in human type I muscle fibres. A surface EMG study in patients with congenital myopathy and type I fibre predominance’,Brain,114, pp. 2123–2132CrossRefGoogle Scholar
  42. Linssen, W. H., Stegeman, D. F., Joosten, E. M., van't Hof, M. A., Binkhorst, R. A., andNotermans, S. L. (1993): ‘Variability and interrelationships of surface EMG parameters during local muscle fatigue’,Muscle Nerve,16, pp. 849–856CrossRefGoogle Scholar
  43. Lo Conte, L. R., Merletti, R., andSandri, G. V. (1994): ‘Hermite expansions of compact support waveforms: applications to myoelectric signals’,IEEE Trans. Biomed. Eng.,41, pp. 1147–1159CrossRefGoogle Scholar
  44. Lo Conte, L. R., andMerletti, R. (1995): ‘Advances in processing of surface myoelectric signals: Part 2’,Med. Biol. Eng. Comput.,33, pp. 373–384CrossRefGoogle Scholar
  45. Lynn, P. A. (1979): ‘Direct on-line estimation of muscle fiber conduction velocity by surface electromyography’,IEEE Trans. Biomed. Eng.,26, pp. 564–571CrossRefGoogle Scholar
  46. Masuda, T., Miyano, H., andSadoyama, T. (1985): ‘The position of innervation zones in the biceps brachii investigated by surface electromyography’,IEEE Trans. Biomed. Eng.,32, pp. 36–42CrossRefGoogle Scholar
  47. Masuda, T., andSadoyama, T. (1987): ‘Skeletal muscles from which the propagation of motor unit action potentials is detectable with a surface electrode array’,Electroencephalogr. Clin. Neurophysiol.,67, pp. 421–427CrossRefGoogle Scholar
  48. McGill, K. C., andDorfman, L. J. (1984): ‘High-resolution alignment of sampled waveforms’,IEEE Trans. Biomed. Eng.,31, pp. 462–468CrossRefGoogle Scholar
  49. McKinley, C. A., andParker, P. A. (1991): ‘A beamformer for the acquisition of evoked potentials’,IEEE Trans. Biomed. Eng.,38, pp. 379–382CrossRefGoogle Scholar
  50. McVicar, G. N., andParker, P. A. (1988): ‘Spectrum dip estimator of nerve conduction velocity’,IEEE Trans. Biomed. Eng.,35, pp. 1069–1076CrossRefGoogle Scholar
  51. Merletti, R., Knaflitz, M., andDe Luca, C. J. (1990): ‘Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions’,J. Appl. Physiol.,69, pp. 1810–1820Google Scholar
  52. Merletti, R., andLo Conte, L. R. (1995): ‘Advances in processing of surface myoelectric signals: Part 1’,Med. Biol. Eng. Comput.,33, pp. 362–372CrossRefGoogle Scholar
  53. Merletti, R., Farina, D., Gazzoni, M., andSchieroni, M. P. (2002): ‘Effect of age on muscle functions investigated with surface electromyography’,Muscle Nerve,25, pp. 65–76CrossRefGoogle Scholar
  54. Mesin, L., Farina, D., andMerletti, R. (2004): ‘Effect of local in-homogeneities in the subcutaneous tissue on muscle fiber conduction velocity estimates assessed with a novel analytical surface EMG model’. Proc. XVth ISEK Congress, Boston, (in press)Google Scholar
  55. Muhammad, W., Meste, O., andRix, H. (2002): ‘Comparison of single and multiple time delay estimators: application to muscle fiber conduction velocity estimation’,Signal Process.,82, pp. 925–940MATHCrossRefGoogle Scholar
  56. Muhammad, W., Meste, O., Rix, H., andFarina, D. (2003): ‘A pseudojoint estimation of time delay and scale factor for M-wave analysis’,IEEE Trans. Biomed. Eng.,50, pp. 459–468CrossRefGoogle Scholar
  57. Naeije, M., andZorn, H. (1983): ‘Estimation of the action potential conduction velocity in human skeletal muscle using the surface EMG cross-correlation technique’,Electromyogr. Clin. Neurophysiol.,23, pp. 73–80Google Scholar
  58. Parker, P. A., andScott, R. N. (1973): ‘Statistics of the myoelectric signal from monopolar and bipolar electrodes’,Med. Biol. Eng.,11, pp. 591–596CrossRefGoogle Scholar
  59. Piper, H. (1912): ‘Electrophysiologie Menschlicher Muskeln’, (Springer-Verlag, Berlin, 1912)Google Scholar
  60. Pozzo, M., Merlo, E., Farina, D., Antonutto, G., Merletti, R., anddi Prampero, P. E. (2003): ‘Muscle fiber conduction velocity estimated from surface EMG signals during very short explosive efforts in humans’,Muscle Nerve,29, pp. 823–833CrossRefGoogle Scholar
  61. Rix, H., andMalengé, J. P. (1980): ‘Detecting small variation in shape’,IEEE Trans. Syst. Man Cybern.,10, pp. 90–96CrossRefGoogle Scholar
  62. Rongen, G. A., van Dijk, J. P., van Ginneken, E. E., Stegeman, D. F., Smits, P., andZwarts, M. J. (2002): ‘Repeated ischaemic isometric exercise increases muscle fibre conduction velocity in humans: involvement of Na(+)−K(+)-ATPase’,J. Physiol.,540, pp. 1071–1078CrossRefGoogle Scholar
  63. Sadoyama, T., Masuda, T., andMiyano, T. (1985): ‘Optimal conditions for the measurement of muscle fiber conduction velocity using surface electrode arrays’,Med. Biol. Eng. Comput.,23, pp. 339–342CrossRefGoogle Scholar
  64. Sadoyama, T., Masuda, T., Miyata, H., andKatsuta, S. (1988): ‘Fibre conduction velocity and fibre composition in human vastus lateralis’,Eur. J. Appl. Physiol. Occup. Physiol.,57, pp. 767–771CrossRefGoogle Scholar
  65. Schneider, J., Rau, G., andSilny, J. (1989): ‘A noninvasive EMG technique for investigating the excitation propagation in single motor units’,Electromyogr. Clin. Neurophysiol.,29, pp. 273–280Google Scholar
  66. Schneider, J., Silny, J., andRau, G. (1991): ‘Influence of tissue inhomogeneities on noninvasive muscle fiber conduction velocity measurements—investigated by physical and numerical modeling’,IEEE Trans. Biomed. Eng.,38, pp.851–860CrossRefGoogle Scholar
  67. Schulte, E., Farina, D., Rau, G., Merletti, R., andDisselhorst-Klug, C. (2003): ‘Single motor unit analysis from spatially filtered surface electromyogram signals. Part 2: conduction velocity estimation’,Med. Biol. Eng. Comput.,41, pp. 338–345CrossRefGoogle Scholar
  68. Spinelli, E., Felice, C. J., Mayosky, M., Politti, J. C., andValentinuzzi, M. E. (2001): ‘Propagation velocity measurement: autocorrelation technique applied to the electromyogram’,Med. Biol. Eng. Comput.,39, pp. 590–593CrossRefGoogle Scholar
  69. Stulen, F. B., andDe Luca, C. J. (1981): ‘Frequency parameters of the myoelectric signals as a measure of muscle conduction velocity’,IEEE Trans. Biomed. Eng.,28, pp. 515–523CrossRefGoogle Scholar
  70. van der Hoeven, J. H., Zwarts, M. J., andvan Weerden, T. W. (1993): ‘Muscle fiber conduction velocity in amyotrophic lateral sclerosis and traumatic lesions of the plexus brachialis’,Electroencephalogr. Clin. Neurophysiol.,89, pp. 304–310CrossRefGoogle Scholar
  71. van der Hoeven, J. H., Links, T. P., Zwarts, M. J., andvan Weerden, T. W. (1994): ‘Muscle fiber conduction velocity in the diagnosis of familial hypokalemic periodic paralysis-invasive versus surface determination’,Muscle Nerve,17, pp. 898–905CrossRefGoogle Scholar
  72. Zwarts, M. J., Drost, G., andStegeman, D. F. (2000): ‘Recent progress in the diagnostic use of surface EMG for neurological diseases’,J. Electromyogr. Kinesiol.,10, pp. 287–291CrossRefGoogle Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  1. 1.Dipartimento di Elettronica, Laboratorio di Ingegneria del Sistema Neuromuscolare (LlSiN)Politecnico di TorinoTorinoItaly

Personalised recommendations