Journal of Hepato-Biliary-Pancreatic Surgery

, Volume 2, Issue 3, pp 205–214 | Cite as

The redox theory in evolution

  • Kazue Ozawa
  • Masayuki Yamamoto
  • Yasuyuki Shimahara
  • Akihiro Kishida
  • Ryoko Tabata
  • Masayuki Takahashi
  • Yasuji Terada
  • Shingo Iwata
  • Takayuki Kobayashi

Key words

arterial ketone body ratio liver mitochondria liver failure multiple organ failure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tanaka A, Kitai T, Tokuka A, Inomoto T, Kim HJ, Tanaka K, Yamaoka Y, Ozawa K (1993) Increased span of oxido-reduction states between pyridine nucleotide and cytochrome c oxidase in the regenerating rabbit liver as measured by arterial ketone body ratio and near-infrared spectroscopy. Res Exp Med 193:353–359Google Scholar
  2. 2.
    Inmoto T, Tanaka A, Mori S, Jin MB, Sato B, Yanabu N, Tokuka A, Kitai T, Ozawa K, Yamaoka Y (1994) Changes in the distribution of the control of the mitochondrial oxidative phosphorylation in regenerating rabbit liver. Biochem Biophys Acta 1188:311–317Google Scholar
  3. 3.
    Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103:514–527PubMedGoogle Scholar
  4. 4.
    Lehninger AL, Sudduth HC, Wise JB (1960) D-β-Hydroxybutyric dehydrogenase of mitochondria. J Biol Chem 235:2450–2455PubMedGoogle Scholar
  5. 5.
    Keller U, Cherrington AD, Lilienquist JE (1978) Ketone body turnover and net hepatic ketone production in fasted and diabetic dogs. Am J Physiol 235 (Endocrinol Metab Gastrointest Physiol 4):E238-E247PubMedGoogle Scholar
  6. 6.
    Schlichtig R, Klions HA, Kramer DJ, Nemoto EM (1992) Hepatic dysoxia commences during O2 supply dependence. J Appl Physiol 72:1499–1505PubMedGoogle Scholar
  7. 7.
    Tani T, Taki Y, Aoyama H, Jikko A, Arii S, Ozawa K, Tobe T (1984) Changes in acetoacetate/β-hydroxybutyrate ratio in arterial blood following hepatic artery embolization in man. Life Sci 35:1177–1182CrossRefPubMedGoogle Scholar
  8. 8.
    Tani T, Taki Y, Jikko A, Minematsu S, Yamamoto M, Kamiyama Y, Tobe T, Ozawa K (1986) Short-term changes in blood ketone body ratios in the phase immediately after hepatic artery embolization: Their clinical significance. Am J Med Sci 291:93–100PubMedGoogle Scholar
  9. 9.
    Tanaka A, Kitai T, Iwata S, Hirao K, Tokuka A, Sato B, Yanabu N, Mori S, Inomoto T, Yamaoka Y, Tanaka K Ozawa K, Chance B (1993) Delayed oxidation of intramitochondrial pyridine nucleotide oxidoreduction state as compared with tissue oxygenation in human liver transplantation. Biochem Biophys Acta 1182:250–256PubMedGoogle Scholar
  10. 10.
    Uno S, Ito S, Kurono M, Yamaoka Y, Kamiyama Y, Ozawa K (1987) A simple and sensitive assay for blood ketone bodies using highly purified 3-hydroxybutyrate dehydrogenase. Clin Chim Acta 168:253–255CrossRefPubMedGoogle Scholar
  11. 11.
    Uno S, Takehiro O, Tabata R, Ozawa K (1995) Sensitive and rapid method for the determination of arterial blood ketone body ratio. Clin Chem, in pressGoogle Scholar
  12. 12.
    Ozawa K (1983) Biological significance of mitochondrial redox potential in shock and multiple organ failure—redox theory. In: Lefer AM, Schumer W (eds) Molecular and cellular aspects of shock and trauma. Alan R Liss, New York, pp 39–66Google Scholar
  13. 13.
    Chance B, Jöbsis F (1959) Changes in influorescence in frog sartorius muscle following a twitch. Nature 4681:195–197Google Scholar
  14. 14.
    Chance B, Cohen P, Jöbsis F, Schoener B (1962) Intracellular oxidation-reduction states in vivo—the microfluorometry of pyridine nucleotide gives a continuos measurement of the oxidation state. Science 137:499–508PubMedGoogle Scholar
  15. 15.
    Quistorff B, Haselgrove JC, Chance B (1985) High spatial resolution readout of 3-D metabolic organ structure: An automated, low-temperature redox ratio-scanning instrument. Anal Biochem 148:389–400CrossRefPubMedGoogle Scholar
  16. 16.
    Ozawa K, Chance B, Tanaka A, Iwata S, Kitai T, Ikai I (1992) Linear correlation between acetoacetate/β-hydroxybutyrate in arterial blood and oxidized flavoprotein/reduced pyridine nucleotide in freeze-trapped human liver tissue. Biochem Biophys Acta 1138:350–352PubMedGoogle Scholar
  17. 17.
    Kitai T, Tanaka A, Terasaki M, Okamoto R, Ozawa K, Morikawa S, Inubushi T (1991) Energy metabolism of the liver in brain-dead dogs assessed by31P-NMR spectroscopy and arterial ketone body ratio. Life Sci 45:511–518Google Scholar
  18. 18.
    Aoyama H, Kamiyama Y, Ukikusa M, Ozawa K (1986) Clinical significance of hippurate-synthesizing capacity in surgical patients with liver disease: A metabolic tolerance test. J Lab Clin Med 108:456–460PubMedGoogle Scholar
  19. 19.
    Ozawa K (1992) Liver surgery approached through the mitochondria. The redox theory in evolution. Medical Tribune, Tokyo and Karger, BaselGoogle Scholar
  20. 20.
    Ozawa K (1992) Towards the aggressive surgery of liver cancer based on the redox theory. Nakayama Institute of Cancer Research Foundation, TokyoGoogle Scholar
  21. 21.
    Ozawa K (1994) Living-related donor liver transplantation. Assessment of graft viability based on the redox theory. Karger, BaselGoogle Scholar
  22. 22.
    Ozawa K, Mori K, Morimoto T (1994) Evaluation of hepatic function. In: Daly JM (ed) Current opinion in general surgery. Annual review of all advances. Evaluation of key references, 2nd edn, Current Science, Philadelphia, pp 17–23Google Scholar
  23. 23.
    Takahashi M, Ueda K, Tabata R, Ozawa K, Kinoshita M (1995) Arterial ketone body ratio as a prognostic indicator in heart failure. Circulation, in pressGoogle Scholar
  24. 24.
    Shimahara Y, Kiuchi T, Yamaoka Y, Yamaguchi T, Takada Y, Yamauchi A, Higashiyama H, Egawa H, Kobayashi N, Mori K, Kumada K, Nakatani T, Ozawa K (1990) Hepatic mitochondrial redox potential and nutritional support in liver insufficiency. In: Tanaka T, Okada T (eds) Proceedings for nutritional support in organ failure, Elsevier, Amsterdam, chapter 28, pp 295–308Google Scholar
  25. 25.
    Scholz R, Olson MS, Schwab AJ, Schwabe U, Noell C, Braun W (1978) The effect of fatty acids on the regulation of pyruvate dehydrogenase in perfused rat liver. Eur J Biochem 86:519–530CrossRefPubMedGoogle Scholar
  26. 26.
    Denton RM, McCormack JG (1980) On the role of calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett 119:1–8CrossRefPubMedGoogle Scholar
  27. 27.
    Batenburg JJ, Olson MS (1976) Regulation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria. J Biol Chem 251:1364–1370PubMedGoogle Scholar
  28. 28.
    Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755-C786PubMedGoogle Scholar
  29. 29.
    Chance B, Leigh JS, Clark BJ Jr, Maris J, Kent J, Nioka S, Smith D (1985) Control oxidative metabolism and oxygen delivery in human skeletal muscle: A steady-state analysis of the work/energy cost transfer function. J Biol Chem 82:8384–8388Google Scholar
  30. 30.
    Dalton N (1994) Arterial ketone body ratio—the importance of going beyond standard liver tests. Eur Clin Lab 13:6–14Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Kazue Ozawa
    • 1
  • Masayuki Yamamoto
    • 6
  • Yasuyuki Shimahara
    • 7
  • Akihiro Kishida
    • 2
  • Ryoko Tabata
    • 3
  • Masayuki Takahashi
    • 4
  • Yasuji Terada
    • 3
  • Shingo Iwata
    • 8
  • Takayuki Kobayashi
    • 5
  1. 1.President of hospitalShiga University of Medical ScienceShigaJapan
  2. 2.First Surgical DepartmentShiga University of Medical ScienceShigaJapan
  3. 3.Department of Emergency MedicineShiga University of Medical ScienceShigaJapan
  4. 4.First Department of Internal MedicineShiga University of Medical ScienceShigaJapan
  5. 5.Department of PhysicsShiga University of Medical ScienceShigaJapan
  6. 6.First Surgical DepartmentYamanashi Medical UniversityYamanashiJapan
  7. 7.First Surgical DepartmentEhime University School of MedicineEhimeJapan
  8. 8.Department of SurgeryKyoto Senbai HospitalKyotoJapan

Personalised recommendations