Journal of Ethology

, Volume 5, Issue 2, pp 95–103 | Cite as

Foraging for patchily-distributed leaf-miners by the parasitoid,Dapsilarthra rufiventris (Hymenoptera: Braconidae). II. Stopping rule for host search

  • Tuyosi Sugimoto
  • Hitokazu Murakami
  • Ryouji Yamazaki
Article

Abstract

We studied the stopping rule which the female parasitoid,Dapsilarthra rufiventris, uses for deciding when to leave the leaflet on which she is searching for leaf-mining larvae,Phytomyza ranunculi. She is unlikely to employ some current stopping rules, such as fixed-number and fixed-time rules and others. The searching female appears to deposit a marking pheromone on the leaflet. We formulated a model for predicting the amount of pheromone accumulated on the leaflet. The model assumes that she will deposit the pheromone on the leaflet at a given rate (a) per unit time which is proportional to search speed, and will leave it when the amount of pheromone reaches the thresholdL. In this modelL denotes the amount of the search effort spent on the leaflet. The model was fitted fairly well to the data. A comparison of the observed results with the predictions of the model suggests thatL increases markedly at the first encounter with the mine and at a lower rate for the subsequent encounters. This appears to be a kind of area-concentrated search, that is, searching for hosts for a while in the immediate vicinity after finding one host, and would be adaptive in foraging forP. ranunculi larvae, which exhibit clumped distributions among leaflets in the field.

Keywords

Animal Ecology Search Effort Female Parasitoid Clump Distribution Subsequent Encounter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beevers, M., W. J. Lewis, H. R. Gross & D. A. Nordlund 1981 Kairomones and their use for management of entomophagous insects. X. Laboratory studies on manipulations of host-finding behavior ofTrichogramma pretiosum Riley with a kairomone extracted fromHelio this zea (Boddie) moth scales.J. Chem. Ecol. 7: 635–648.CrossRefGoogle Scholar
  2. Charnov, E. L. 1976 Optimal foraging: the marginal value theorem.Theor. Popul. Biol. 9: 129–136.PubMedGoogle Scholar
  3. Charnov, E. L. & S. M. Skinner 1985 Complementary approaches to the understanding of parasitoid oviposition decisions.Environ. Entomol. 14: 383–391.Google Scholar
  4. Galis, F. & J. J. M. van Alphen 1981 Patch time allocation and search intensity ofAsobara tabida Nees (Braconidea), a larval parasitoid of drosophila.Neth. J. Zool. 31: 596–611.Google Scholar
  5. Gibb, J. A. 1962. L. Tinbergen’s hypothesis of the role of specific search images.Ibis 104: 106–111.Google Scholar
  6. Green, R. F. 1984 Stopping rules for optimal foragers.Am. Nat. 123: 30–43.CrossRefGoogle Scholar
  7. Gross, H. R. Jr. 1981 Employment of kairomones in the management of parasitoids. In: D. A. Nordlund, R. L. Jones & W. J. Lewis (eds.)Semiochemicals, their role in pest control. pp. 137–150. John Wiley & Sons, New York.Google Scholar
  8. Hassell, M. P. & R. M. May 1974 Aggregation of predators and insect parasites and its effect on stability.J. Anim. Ecol. 43: 567–594.Google Scholar
  9. Hassell, M. P. & T. R. E. Southwood 1978 Foraging strategies of insects.Ann. Rev. Ecol. Syst. 9: 75–98.CrossRefGoogle Scholar
  10. Iwasa, Y., M. Higashi & N. Yamamura 1981 Prey distribution as a factor determining the choice of optimal foraging strategy.Am. Nat. 117: 710–723.CrossRefGoogle Scholar
  11. Krebs, J. R. 1973 Behavioral aspects of predation. In: P. P. Bateson & P. H. Klopfer (eds.)Perspectives in ethology. pp. 73–111. Plenum, New York.Google Scholar
  12. Krebs, J. R. 1978 Optimal foraging: decision rule for predator. In: J. R. Krebs & N. B. Davies (eds.)Behavioural ecology: an evolutionary approach. pp. 23–63. Blackwell Scientific Publications, London.Google Scholar
  13. Lain, J. 1937 Host finding by insect parasites. I. Observations on the finding of hosts byAlysia manducator, Mormoniella vitripennis andTrichogramma evanescens.J. Anim. Ecol. 6: 298–317.Google Scholar
  14. Morrison, G. & W. J. Lewis 1981 The allocation of searching time byTrichogramma pretiosum in host-containing patches.Ent. Exp. Appl. 30: 31–39.Google Scholar
  15. Nakamuta, K. 1985 Mechanism of the switchover from extensive to area-concentrated search behaviour of the ladybird beetle,Coccinella septempunctata bruckii.J. Insect Physiol. 31: 849–856.CrossRefGoogle Scholar
  16. Price, P. W. 1970 Trail odors: recognition by insect parasites on cocoons.Science 170: 546–547.PubMedGoogle Scholar
  17. Pyke, G. H. 1984 Optimal foraging theory: a critical review.Ann. Rev. Ecol. Syst. 15: 523–575.CrossRefGoogle Scholar
  18. Pyke, G. H., H. R. Pulliam & E. L. Charnov 1977 Optimal foraging: a selective review of theory and tests.Q. Rev. Biol. 52: 137–154.CrossRefGoogle Scholar
  19. Sokal, R. R. & F. J. Rohlf 1973 Initoduction to biostatistics. Trans. into Japanese by K. Fujii, Kyoritsu, Tokyo, 449pp.Google Scholar
  20. Stewart-Oaten, A. 1982 Mimmax strategies for a predator-prey game.Theor. Popul. Biol. 22: 410–424.Google Scholar
  21. Strand, M. R. & S. B. Vinson 1982 Benavioral response of the parasitoid,Cardiochiles nigriceps to a kairomone.Ent. Exp. Appl. 31: 308–315.Google Scholar
  22. Sugimoto, T., 1971 On competition among larvae in experimental population of a leaf mining fly,Phytomyza ranunculi Schrank (Diptera: Agromyzidae).Appl. Ent. Zool. 6: 97–104.Google Scholar
  23. Sugimoto, T. 1976 On distribution of egg population of a leaf mining fly,Phytomyza ranunculi Schrank (Diptera, Agromyzidae) among leaves and in a leaf.Mem. Fac. Agric. Kinki Univ. 9: 11–19.Google Scholar
  24. Sugimoto, T. 1980, Models of the spatial pattern of egg population of ranunculus leaf mining fly,Phytomyza ranunculi (Diptera: Agromyzidae), in host leaves.Res. Popul. Ecol. 22: 13–32.Google Scholar
  25. Sugimoto, T., M. Uenishi & F. Machida 1986 Foraging for patchily-distributed leaf-miners by the parasitoid,Dapsilarthra rufiventris (Hymenoptera: Braconidae) I. Discrimination of previously searched leaflets.Appl. Ent. Zool. 21: 500–508.Google Scholar
  26. van Alphen, J. J. M. & F. Galis 1983 Patch time allocation and parasitization efficiency ofAsobara tabida, a larval parasitoid of drosophila.J. Anim. Ecol. 52: 937–952.Google Scholar
  27. Vinson, S. B. 1985 The behavior of parasitoids. In: G. A. Kerkut & L. I. Gilbert (eds.)Comprehensive insect physiology biochemistry and pharmacology. 9. Behaviour. pp. 417–469. Pergamon Press, Oxford.Google Scholar
  28. Waage, J. K. 1979 Foraging for patchily-distributed hosts by the parasitoid,Nemeritis canescens.J. Anim. Ecol. 48: 353–371.Google Scholar
  29. Weseloh, R. M. 1980 Behavioral changes inApanteles melanoscelus females exposed to gypsy moth silk.Environ. Ent. 9: 345–349.Google Scholar
  30. Yano, E. 1978 A simulation model of searching behaviour of a parasite.Res. Popul. Ecol. 22: 105–122.Google Scholar
  31. Ydenberg, R. C. 1984 Great tits and giving-up times: decision rules for leaving patches.Behaviour 90: 1–24.Google Scholar
  32. Zach, R. & Falls J. B. 1976a Ovenbird (Aves: Parulidae) hunting behavior in a patchy environment: an experimental study.Can. J. Zool. 54: 1863–1879.Google Scholar
  33. Zach, R. & Falls J. B. 1976b Do ovenbird (Aves: Parulidae) hunt by expectation?Can. J. Zool. 54: 1894–1903.Google Scholar

Copyright information

© Japan Ethological Society 1987

Authors and Affiliations

  • Tuyosi Sugimoto
    • 1
  • Hitokazu Murakami
    • 1
  • Ryouji Yamazaki
    • 1
  1. 1.Entomological Laboratory, Faculty of AgricultureKinki UniversityHigashi-OsakaJapan

Personalised recommendations