Radiation induced chain addition of allylbenzene to 1,4-dioxane

  • S. V. Nesterov
  • S. Kücükyavuz
  • A. M. Önal
Letter to the Editor


Radiation induced chain addition of allylbenzene to 1,4-dioxane has been studied by IR-, UV-, mass-, NMR- and ESR-spectrometry. Efficiency of the addition depends on the concentration of monomer and it has an optimum atCmonom<0.125M. Apparently, upper concentration limit of the reaction is caused by absorbed energy transfer on the molecule, of monomer followed by energy deactivation. Radiation-chemical yields of the product are 12 and 31 molec./100 eV for 0.125M and 0.07M solution, respectively. The value ofGprod. is an evidence of chain character of the process.


Radiation Physical Chemistry Inorganic Chemistry Energy Transfer Concentration Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. G. Myasoedova, G. V. Dmitrieva, Khim. Vysok. Energ., 25 (1991) 244 (in Russian).Google Scholar
  2. 2.
    M. Draye, R. Chomel, P. Doutreluingne et al., J. Radioanal. Nucl. Chem., 175 (1993) 55.Google Scholar
  3. 3.
    V. M. Abashkin, D. W. Wester, J. A. Campbell, K. E. Grant, Radiat. Phys. Chem., 48 (1996) 463.CrossRefGoogle Scholar
  4. 4.
    V. V. Yakshin, O. M. Vilkova, B. N. Laskorin, Dokl. Akad. Nauk. SSSR, 325 (1992) 267 (in Russian).Google Scholar
  5. 5.
    M. Rodriguez, J. A. Suarez, A. G. Espartero, Nucl. Instr. Meth. Phys. Res., A 369 (1996) 348.Google Scholar
  6. 6.
    M. Hiraoka, Crown-Compounds, Mir, Moscow, 1988 (in Russian).Google Scholar
  7. 7.
    V. V. Yakshin, V. M. Abashkin, N. G. Jukova et al., Dokl. Akad. Nauk. SSSR, 263 (1979) 1165 (in Russian).Google Scholar
  8. 8.
    Yu. A. Zolotov, N. M. Kuzmin, Application of Macrocyclic Compounds in Analytical Chemistry, Nauka, Moscow, 1993 (in Russian).Google Scholar
  9. 9.
    E. I. Grigor'ev, S. V. Nesterov, L. I. Trakhtenberg, Russian J. Phys. Chem., 69 (1995) 1735.Google Scholar
  10. 10.
    A. G. Shostenko, N. A. Shapovalov, V. E. Myshkin, Khim. Vysok. Energ., 22 (1988) 326 (in Russian).Google Scholar
  11. 11.
    M. M. Silaev, A. M. Afanas'ev, E. P. Kalyazin, L. T. Bugaenko, Khim. Vysok. Energ., 20 (1986) 284 (in Russian).Google Scholar
  12. 12.
    V. I. Dobrov, I. B. Karasev, Yu. M. Lugovoy et al., Khim. Vysok. Energ., 28 (1994) 562 (in Russian).Google Scholar
  13. 13.
    S. V. Nesterov, J. Radioanal. Nucl. Chem., 230 (1998) 273.Google Scholar
  14. 14.
    R. M. Silverstein, C. G. Bassler, T. C. Morrill, Spectrometric Identification of Organic Compounds, Wiley Intern. Ed., New York, 1974.Google Scholar
  15. 15.
    V. N. Belevskii, S. I. Belopushkin, V. I. Fel'dman, Yu. V. Rakitin, Dokl. Akademii Nauk SSSR, 282 (1985) 1161 (in Russian).Google Scholar
  16. 16.
    E. I. Grigor'ev, S. V. Nesterov, Khimia Vysok. Energ., 26 (1992) 483 (High Energy Chem. [Engl. Transl.] 26 (1992) 381).Google Scholar
  17. 17.
    K. Sousy, A. Usanmaz, A. M. Önal, Polymer, 31 (1990) 1564.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • S. V. Nesterov
    • 1
  • S. Kücükyavuz
    • 2
  • A. M. Önal
    • 2
  1. 1.Karpov Institute of Physical ChemistryMoscowRussia
  2. 2.Middle East Technical UniversityAnkaraTurkey

Personalised recommendations