Optimization of the preparation of153Sm-EDTMP using natural samarium targets for clinical use

  • M. A. Majali
  • A. R. Mathakar
  • H. H. Shimpi


153Sm (specific activity 3.7 to 5.55 GBq/mg) was produced by irradiating natural Sm2O3 at a flux of 2.2·1013 n·cm−2·s−1. Ethylenediaminetetramethylenephosphonate (EDTMP) was synthesised according to a reported method. Complexation was carried out by varying experimental parameters such as mole ratios of metal to ligand, pH, time and temperature of reaction to obtain quantitative yields. The radiochemical purity of the complex was assessed by various analytical techniques including HPLC. In vitro ligand exchange studies were undertaken to ensure suitability of the product for therapy. Biodistribution studies were carried out in Wistar rats and adequate bone uptake, retention and rapid clearance from blood stream were observed.


Physical Chemistry HPLC Inorganic Chemistry Sm2O3 Experimental Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Winston, Semin. Nucl. Med., 2 (1979) 114.Google Scholar
  2. 2.
    J. C. Harbert, Radionuclide therapy of bone pain, in: Nuclear Medicine Therapy, Thieme Medical Publishers, New York, 1987.Google Scholar
  3. 3.
    E. Kaplan, in: Therapy in Nuclear Medicine,R. Spencer (Ed.), Grune & Stratton, New York, 1978, p. 237.Google Scholar
  4. 4.
    A. Cheung, A. A. Driedger, Radiol., 134 (1980) 209.Google Scholar
  5. 5.
    V. J. Lewington, Eur. J. Nucl. Med., 20 (1990) 66.Google Scholar
  6. 6.
    J. Simon, W. F. Goeckeler, B. Edwards, L. Stringham, W. A. Volkert, D. E. Troutner, R. A. Holmes, S. Harry, J. Label. Comp. Radiopharm. 23 (1986) 1344.Google Scholar
  7. 7.
    W. F. Goeckeler, D. E. Troutner, W. A. Volkert, Nucl. Med. Biol., 14 (1986).Google Scholar
  8. 8.
    A. R. Ketring, Nucl. Med. Biol., 14 (1987) 223.Google Scholar
  9. 9.
    W. A. Volkert, J. Simon, A. R. Ketring, R. A. Holmes, L. C. Lattimer, L. A. Corwin, Drugs of the Future, 4 (1989) 799.Google Scholar
  10. 10.
    J. C. Lattimer, W. F. Goeckeler, J. Nucl. Med., 31 (1990) 586.Google Scholar
  11. 11.
    P. Saraswathy, D. V. S. Narasimhan, P. S. Balasbramanian, D. K. Ranganatha, U. N. Nayak, R. B. Patel, P. Ramanathan, IJNM, 12 (1997) 191.Google Scholar
  12. 12.
    K. Moedritzer, R. R. Irani, J. Org. Chem., 31 (1966) 1603.Google Scholar
  13. 13.
    W. F. Goeckeler, D. E. Troutner, W. A. Volkert, B. Edwards, J. Simon, D. Wilson, Nucl. Med. Biol., 13 (1986) 479.Google Scholar
  14. 14.
    Training Notes, IAEA Training Course on Therapeutic Radiopharmaceuticals, Beijing, China, Oct. 1997.Google Scholar
  15. 15.
    M. A. Majali, A. R. Mathkar, H. H. shimpi, M. R. A. pillai, under preparation.Google Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • M. A. Majali
    • 1
  • A. R. Mathakar
    • 1
  • H. H. Shimpi
    • 2
  1. 1.Radiopharmaceuticals Section, Isotope DivisionB.A.R.C.MumbaiIndia
  2. 2.Radiation Medicine CentreB.A.R.C.MumbaiIndia

Personalised recommendations