Adsorption behavior of rice husk for the decontamination of chromium from industrial effluents

  • N. Khalid
  • A. Rahman
  • S. Ahmad
  • A. Toheed
  • J. Ahmed


Rice husk, an agricultural waste product, was studied as a potential decontaminant for chromium in the effluents of leather tanning industries. Physico-chemical parameters such as selection of appropriate electrolyte, shaking time, concentration of adsorbent and adsorbate were studied to optimize the best conditions in which this material can be utilized on commercial scale for the decontamination of effluents. The radiotracer technique was used to determine the distribution of chromium. In certain cases atomic absorption spectrophotometry was also employed. Maximum adsorption was observed at 0.01 mol·dm−3 acid solutions (HNO3, HCl, H2SO4 and HClO4) using 3.0 g of adsorbent for 2.73·10−3 mol·dm−3 chromium concentration in five minutes equilibration time. Studies show that the adsorption decreases with the increase in the concentrations of all the acids. The adsorption data follows the Freundlich isotherm over the range of 2.73·10−3 to 2.73·10−2 mol·dm−3 chromium concentration. The characteristic Freundlich constants, i.e., 1/n=0.86±0.06 andA=2.35±0.06 mmol·g−1 have been computed for the sorption system. Thermodynamic parameters, i.e., ΔG0, ΔS0 and ΔH0 have also been calculated for the system. Application of the method to a test case of a medium size industry showed that 21 kg of rice husk was sufficient to maintain the NEQS limits of chromium for industrial effluents.


Chromium HClO4 Rice Husk Atomic Absorption Spectrophotometry Industrial Effluent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. L. Nemerow, Liquid Waste of Industry, Theories, Practice of Treatment, Addison-Wesley, Reading, MA. 1971, p. 145.Google Scholar
  2. 2.
    W. N. Grune, J. Water Pollut. Contr. Fed., 42 (1970) 1211.Google Scholar
  3. 3.
    S. P. Pande, D. N. Kulkarni, D. M. Dharmadhikari, Impact Mining Environ., (1994) 245.Google Scholar
  4. 4.
    J. M. Philipot, F. Chaffange, J. Sibony, Water Sci. Technol., 17 (1984) 1121.Google Scholar
  5. 5.
    A. Z. Mohmoud, J. Inst. Eng. (India) 33 (1991) No. 3, 10.Google Scholar
  6. 6.
    S. E. Jorgensen, Industrial Waste Water Management, Elsevier Science Publishers, New York, Chap. 7, 1979, p. 81.Google Scholar
  7. 7.
    G. B. Wentink, J. E. Eztel, J. Water Pollut. Contr. Fed., 44 (1972) 1561.Google Scholar
  8. 8.
    B. O. Ulkher, N. Gonen, S. Koparal, Intern. J. Environ. Stud., 45 (1994) 81.Google Scholar
  9. 9.
    J. W. Patterson, Waste Water Treatment Technology, 3rd. ed., Ann, Arbor Science, Ann Arbor, MI, 1978.Google Scholar
  10. 10.
    A. R. Bowers, C. P. Huang, Prog. Water Technol., 12 (1980) 629.Google Scholar
  11. 11.
    C. P. Huang, M. H. Wu, J. Water Pollut. Contr. Fed. 47 (1975) 2437.Google Scholar
  12. 12.
    M. M. Bhutani, A. K. Mitra, R. Kumari, Mikrochim. Acta, 107 (1992) 19.CrossRefGoogle Scholar
  13. 13.
    M. M. Bhutani, A. K. Mitra, R. Kumari, Radiochimica Acta. 56 (1992) 153.Google Scholar
  14. 14.
    M. M. Bhutani, R. Kumari, A. K. Mitra, J. Radioanal., Nucl. Chem., 159 (1992) 343.Google Scholar
  15. 15.
    M. M. Bhutani, R. Kumari, J. Radioanal., Nucl. Chem., 180 (1994) 145.Google Scholar
  16. 16.
    M. Friedman, C. S. Harrison, W. H. Ward, H. P. Lundgren, J. Appl. Polym. Sci., 17 (1973) 377.Google Scholar
  17. 17.
    M. S. Masri, F. W. Reuter, M. Friedman, J. Appl. Polym. Sci., 18 (1974) 675.Google Scholar
  18. 18.
    M. S. Masri, M. Friedman, J. Appl. Polym. Sci., 18 (1974) 2367.Google Scholar
  19. 19.
    J. M. Randall, E. Hautala, G. McDonnell, J. Appl. Polym. Sci., 22 (1978) 379.Google Scholar
  20. 20.
    P. Kumar, S. S. Dara, J. Polym. Sci., Polymer Chem. Ed., 19 (1981) 397.Google Scholar
  21. 21.
    S. S. Krishnan, A. Cancilla, R. E. Jervis, J. Radioanal. Nucl. Chem., 110 (1987) 373.Google Scholar
  22. 22.
    M. Patel, A. Karera, P. Prasonna, J. Mater. Sci., 22 (1987) 2457.CrossRefGoogle Scholar
  23. 23.
    S. Ahmad, I. H. Qureshi, Intern. J. Environ. Anal. Chem., 44 (1991) 257.Google Scholar
  24. 24.
    N. Khalid, S. Ahmad, S. N. Kiani, J. Ahmed, Sep. Sci. Technol., to be published.Google Scholar
  25. 25.
    D. L. Dugger, J. H. Stanton, B. N. Irby, B. L. McDonnell, W. W. Cummings, R. W. Maatman, J. Phys. Chem., 68 (1964) 757.Google Scholar
  26. 26.
    G. A. Parks, Chem. Rev., 65 (1965) 177.CrossRefGoogle Scholar
  27. 27.
    P. Benes, V. Majer, Trace Chemistry of Aqueous Solutions, Elsevier, Amsterdam, 1980, p. 200.Google Scholar
  28. 28.
    S. P. Mishra, S. N. Singh, Intern. J. Appl. Radiation Isotopes, 38 (1987) 541.Google Scholar
  29. 29.
    M. M. Bhutani, A. K. Mitra, R. Kumari, J. Radioanal. Nucl. Chem., 157 (1992) 75.Google Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • N. Khalid
    • 1
  • A. Rahman
    • 1
  • S. Ahmad
    • 1
  • A. Toheed
    • 2
  • J. Ahmed
    • 2
  1. 1.Nuclear Chemistry DivisionPakistan Institute of Nuclear Science and TechnologyIslamabad, Pakistan
  2. 2.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations