Journal of Radioanalytical and Nuclear Chemistry

, Volume 239, Issue 2, pp 335–340 | Cite as

Laser-induced fluorescence study on the interaction of Eu(III) with polycarboxylates

  • Y. Takahashi
  • T. Kimura
  • Y. Kato
  • Y. Minai
  • Y. Makide
  • T. Tominaga
Materials Science: Positron Annihilation/Isotopes

Abstract

Laser-induced fluorescence spectroscopy was applied to obtaining hydration structure of Eu(III) complexes with synthetic polycarboxylates of poly(acrylic acid), poly(maleic acid), poly(methacrylic acid), and poly(a-hydroxyacrylic acid). Dependence of\(N_{H_2 O} \) (the number of water molecules in the first coordination sphere of Eu(III) ion) on pH and supporting electrolyte concentration was obtained for these complexes. The spectroscopic results show that Eu(III) is surrounded by the “cage” of polycarboxylate ligands. The pH-induced transition in conformation of poly(methacrylic acid) ligand was clearly observed in the\(N_{H_2 O} \) plot vs. pH.

Keywords

Spectroscopy Hydration Cage Inorganic Chemistry Water Molecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Choppin, Radiochim. Acta, 44/45 (1988) 23.Google Scholar
  2. 2.
    J. I. Kim, P. Zeh, B. Delakowitz, Radiochim. Acta, 58/59 (1992) 147.Google Scholar
  3. 3.
    E. Tipping, Radiochim. Acta, 62 (1993) 141.Google Scholar
  4. 4.
    P. Warwick, A. Hall, D. Read, Radiochim. Acta, 66/67 (1994) 133.Google Scholar
  5. 5.
    T. Yoon, H. Moon, Y. J. Park, K. K. Park, Environ. Sci. Technol., 28 (1994) 2139.Google Scholar
  6. 6.
    F. X. Koppold, G. R. Choppin, Radiochim. Acta, 42 (1987) 29.Google Scholar
  7. 7.
    J. A. Marinsky, Coord. Chem. Rev., 19 (1976) 125.CrossRefGoogle Scholar
  8. 8.
    W. DeW. Horrocks, Jr.,M. Albin, Progress in Inorganic Chemistry, Vol. 31,S. J. Lippard (Ed.), Wiley and Sons, New York, 1983.Google Scholar
  9. 9.
    F. S. Richardson, Chem. Rev., 82 (1982) 541.CrossRefGoogle Scholar
  10. 10.
    T. Kimura, G. R. Choppin, J. Alloys Comp., 213/214 (1994) 313.CrossRefGoogle Scholar
  11. 11.
    I. Nagata, Y. Okamoto, Macromolecules, 16 (1983) 749.Google Scholar
  12. 12.
    S. Lis, Z. Wang, G. R. Choppin, Inorg. Chim. Acta, 239 (1995) 139.CrossRefGoogle Scholar
  13. 13.
    E. V. Anufrieva, T. M. Birshtein, T. N. Nekrasava, O. B. Pittsyn, T. V. Sheveleva, J. Polym. Sci., C, 16 (1968) 3519.Google Scholar
  14. 14.
    V. Crescenzi, F. Quadrifoglio, F. Delven, J. Polym. Sci., A-2, 10 (1972) 357.Google Scholar
  15. 15.
    F. Yamashita, J. C. T. Kwak, J. Polym. Sci., Polym. Phys., 25 (1987) 1395.CrossRefGoogle Scholar
  16. 16.
    M. Sakurai, T. Imai, F. Yamashita, K. Nakamura, T. Komatsu, T. Nakagawa, Polym. J., 25 (1993) 1247.CrossRefGoogle Scholar
  17. 17.
    J. C. Leyte, M. Mandel, J. Polym. Sci., A, 2 (1964) 1879.Google Scholar
  18. 18.
    Y. Takahashi, T. Kimura, Y. Kato, Y. Minai, T. Tominaga, J. Radioanal. Nucl. Chem., 212 (1996) 11.Google Scholar
  19. 19.
    R. A. Torres, G. R. Choppin, Radiochim. Acta, 35 (1984) 143.Google Scholar
  20. 20.
    Y. Takahashi, Doctor Thesis, University of Tokyo, 1997.Google Scholar
  21. 21.
    T. Miyajima, M. Mori, S. Ishiguro, J. Colloid Interface Sci., 187 (1997) 259.CrossRefGoogle Scholar
  22. 22.
    A. E. Martell, R. M. Smith, Critical Stability Constants, Plenum Press, New York, 1982.Google Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • Y. Takahashi
    • 1
  • T. Kimura
    • 2
  • Y. Kato
    • 2
  • Y. Minai
    • 3
  • Y. Makide
    • 1
  • T. Tominaga
    • 4
  1. 1.Radioisotope CenterThe University of TokyoTokyoJapan
  2. 2.Japan Atomic Energy Research InstituteIbarakiJapan
  3. 3.Center for Arts and SciencesMusashi UniversityTokyoJapan
  4. 4.University of TokyoTokyoJapan

Personalised recommendations