Studies on some materials suitable for use as internal standards in high energy EPR dosimetry

  • N. D. Yordanov
  • V. Gancheva
  • V. A. Pelova
End of the Proceedings


EPR-spectroscopic properties (line-intensity,-width, andg-factors) of pyrolized at 550°C sucrose, MgO and MgO doped with Mn2+ ions (500∶1) remain unchanged after high-dose (1–100 kGy) irradiation, whereas CaO gives an EPR signal. These properties of these materials make it possible to use them as internal reference EPR standards in the work under conditions of strong ionisation environment, for precise determination of theG-values of other materials, for obtaining exact magnitudes of increase of the EPR response when the method of additional dose is applied, to follow the kinetics of decay of some radiation induced defects.


Radiation Physical Chemistry Sucrose Inorganic Chemistry Internal Reference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. D. Yordanov, N. D. V. Gancheva, Anal. Lab., 5 (1996) 162.Google Scholar
  2. 2.
    W. W. Bradshow, D. G. Cadena, G. W. Crowfird, H. A. W. Spetzler, Radiat. Res., 17 (1962) 11.Google Scholar
  3. 3.
    D. F. Regulla, U. Deffner, Intern. J. Appl. Radiation Isotopes, 33 (1982) 1101.CrossRefGoogle Scholar
  4. 4.
    M. Ikeya, New Applications of Electron Spin Resonance, World Scientific Publishing, Singapore, 1993.Google Scholar
  5. 5.
    R. A. Friedel, I. A. Breger, Science, 130 (1959) 1762.Google Scholar
  6. 6.
    J. Duchense, J. Depireux, L. M. van der Kaa, Geochim. Cosmochim. Acta, 23 (1961) 209.Google Scholar
  7. 7.
    O. Hola, A. Stasko, M. Foeldesova, J. Radioanal. Nucl. Chem., 165 (1992) 71.Google Scholar
  8. 8.
    N. D. Yordanov, Appl. Magn. Res., 6 (1994) 241.Google Scholar
  9. 9.
    S. P. S. Yen, R. Somoano, S. K. Khanna, A. Rembaum, Solid State Commun., 36 (1980) 339.CrossRefGoogle Scholar
  10. 10.
    J. M. Pochan, D. F. Pochan, H. Rommelmann, H. W. Gibson, Macromolecules, 14 (1981) 110.CrossRefGoogle Scholar
  11. 11.
    V. N. Lyniov, in: Electron Magnetic Resonance of Disordered Systems,N. D. Yordanov (Ed.), World Scientific Publishing, Singapore, 1991, p. 53.Google Scholar
  12. 12.
    N. D. Yordanov, M. Ivanova, Appl. Magn. Res., 6 (1994) 347.Google Scholar
  13. 13.
    N. D. Yordanov, B. Genova, Anal. Chim. Acta, 353 (1997) 99.CrossRefGoogle Scholar
  14. 14.
    N. D. Yordanov, M. Ivanova, Appl. Magn. Res., 6 (1994) 333.Google Scholar
  15. 15.
    D. J. E. Ingram, Free Radicals as Studied by Electron Spin Resonance, Butterworths, London, 1958.Google Scholar
  16. 16.
    D. J. E. Ingram, Biological and Biochemical Applications of Electron Spin Resonance, Adam Hilger, London, 1969.Google Scholar
  17. 17.
    I. H. Pieth, in: NMR and EPR Spectroscopy, 3rd Annual Workshop on Nuclear Magnetic Resonance and Electron Paramagnetic Resonance held at Palo Alto, California, Pergamon Press, New York, 1960 (Russian edition: Mir, Moscow, 1964, p. 183.Google Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • N. D. Yordanov
    • 1
  • V. Gancheva
    • 1
  • V. A. Pelova
    • 2
  1. 1.Institute of CatalysisBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of ChemistrySofia UniversitySofiaBulgaria

Personalised recommendations