Advertisement

Synthesis of [123I] iodoantipyrine to study the high-LET characteristics of Auger electrons in mammalian cells

  • J. P. Slabbert
  • J. H. Langenhoven
  • B. S. Smit
Article

Abstract

4-Iodoantipyrine was synthesised from phenazone, labeled with123I and administered to cells in culture. 4-[123I]iodoantipyrine carries the radionuclide across the cell membrane allowing one to study the biological effects of the very short ranged Auger electrons emitted by this isotope. The formulation used to prepare this compound proves to be free of reagents that may have an adverse effect on the mitotic activity of cells in culture. By observing micronuclei frequencies in human lymphocytes and CHO-K1 cells the high-LET characteristics of Auger electrons could be demonstrated. Compared to extracellular disintegrations from [123I]NaI and123I-human serum albumin, a substantial reduction in the variation in radiosensitivity of these cell types was noted when treated with 4-[123I] iodoantipyrine.

Keywords

Adverse Effect Physical Chemistry Cell Membrane Albumin Inorganic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Humm, R. W. Howell, D. V. Rao, Med. Phys., 21 (1994) 1901.Google Scholar
  2. 2.
    R. W. Howel, Med. Phys., 19 (1992) 1371.Google Scholar
  3. 3.
    L. Persson, Health Phys., 67 (1994) 471.Google Scholar
  4. 4.
    D. V. Rao, V. R. Narra, R. W. Howell, V. K. Lanka, K. S. R. Sastry, Radiat. Res., 125 (1991) 89.Google Scholar
  5. 5.
    N. Niyazaki, K. Shinohara, Radiat. Res., 133 (1993) 182.Google Scholar
  6. 6.
    K. G. Hofer, S. Bao, Radiat. Res., 141 (1995) 183.Google Scholar
  7. 7.
    J. DiMattio, G. M. Hochwald, Stroke, 3 (1972) 446.Google Scholar
  8. 8.
    T. E. Boothe, J. A. Campbell, B. Djermouni, R. D. Finn, A. J. Gilson, Intern. J. Appl. Radiation Isotopes, 32 (1981) 153.CrossRefGoogle Scholar
  9. 9.
    T. E. Boothe, R. D. Finn, M. M. Vora, A. M. Emran, P. J. Kothari, Intern. J. Appl. Radiation Isotopes, 35 (1984) 1138.CrossRefGoogle Scholar
  10. 10.
    T. E. Boothe, R. D. Finn, M. M. Vora, P. J. Kothari, A. M. Emran, J. Label. Comp. Radiopharm., 23 (1986) 479.Google Scholar
  11. 11.
    M. A. Trivedi, J. Label. Comp. Radiopharm., 38 (1996) 489.CrossRefGoogle Scholar
  12. 12.
    G. El-Shaboury, K. Farah, Appl. Radiation, Isotopes, 42 (1991) 1091.Google Scholar
  13. 13.
    G. D. Robinson, A. W. Lee, J. Nucl. Med., 17 (1976) 1093.Google Scholar
  14. 14.
    G. D. Robinson, A. W. Lee, Intern. J. Appl. Radiation Isotopes. 30 (1979) 365.CrossRefGoogle Scholar
  15. 15.
    E. Hallaba, J. Drouet, Intern. J. Appl. Radiation Isotopes, 22 (1971) 46.CrossRefGoogle Scholar
  16. 16.
    Z. Almassy, A. B. Krepinsky, A. Bianco, G. J. Koteles, Appl. Radiation Isotopes, 38 (1987) 241.Google Scholar
  17. 17.
    A. D. Kligerman, S. C. King, Intern. J. Radiation. Biol., 68 (1995) 19.Google Scholar
  18. 18.
    A. I. Kassis, S. J. Adelstien, J. Nucl. Med., 21 (1980) 88.Google Scholar
  19. 19.
    J. P. Slabbert, T. Theron, A. Serafin, D. T. L. Jones, L. Böhm, G. Schmitt, Strahlentherapie und Onkologie, 172 (1996) 2.Google Scholar
  20. 20.
    R. L. Gragg, R. M. Humphrey, H. D. Thames, R. E. Meyn, Radiat. Res., 76 (1978) 283.Google Scholar
  21. 21.
    H. Sasaki, Radiat. Res., 99 (1984) 311.Google Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • J. P. Slabbert
    • 1
  • J. H. Langenhoven
    • 1
  • B. S. Smit
    • 1
  1. 1.National Accelerator CentreFaureSouth Africa

Personalised recommendations