Skip to main content
Log in

Radon determination by activated charcoal adsorption and liquid scintillation measurement

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A passive diffusion method for the determination of radon concentration has been optimised and calibrated. The device consists of a scintillation vial containing activated charcoal, a diffusion barrier and a desiccant agent. The response to diverse atmospheric humidity and variable exposure intervals was studied. The result is a detector independent of atmospheric humidity till 7 days of exposure. The method was compared with electret detectors (US EPA) with very satisfactory results. The advantages of this method are its simplicity, low cost, low detection limit, the total automatization of the measurement and its total independence of humidity to measure in a wide range of radon concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation, UNSCEAR Report to the General Assembly with Scientific Annexes, United Nations, New York, 1993, p. 45.

    Google Scholar 

  2. M. L. Maiello, N. H. Harley, Health Phys., 53 (1987) 301.

    CAS  Google Scholar 

  3. M. Urban, D. A. C. Binns, J. J. Estrada, KFK 3866, CNEN 1101, 1985.

  4. P. Kotrappa, J. C. Dempsey, J. R. Hickey, L. R. Stieff, Health Phys., 54 (1988) 47.

    CAS  Google Scholar 

  5. B. L. Cohen, E. S. Cohen, Health Phys., 45 (1983) 501.

    CAS  Google Scholar 

  6. A. C. George, Health Phys., 46 (1984) 867.

    CAS  Google Scholar 

  7. H. M. Prichard, K. A. Marien, Health Phys., 48 (1985) 797.

    CAS  Google Scholar 

  8. B. L. Cohen, R. Nason Health Phys., 50 (1986) 457.

    CAS  Google Scholar 

  9. T. Ren, L. Lin, Rad. Prot. Dosim., 19 (1987) 121.

    CAS  Google Scholar 

  10. U.S. Environmental Protection Agency, NAREL Standard Operating Procedures for Radon-222, Measurement Using Diffusion Barrier Charcoal Canister, Washington D.C., U.S. EPA Office of Radiation Programme, EPA 520/5-90-032, 1990.

  11. C. S. Scarpitta, Health Phys., 62 (1992) 576.

    CAS  Google Scholar 

  12. M. C. Schroeder, U. Vanags, C. T. Hess, Health Phys., 57 (1989) 43.

    CAS  Google Scholar 

  13. F. Schönhofer, K. Pock, H. Friedmann J. Radioanal. Nucl. Chem., 193 (1995) 337.

    Google Scholar 

  14. H. M. Prichard, K. Marien, Anal. Chem., 55 (1983) 155.

    CAS  Google Scholar 

  15. P. M. Pojer, J. Peggie, R. O'Brien, S. Solomon, K. Wise, Health Phys., 58 (1990) 13.

    CAS  Google Scholar 

  16. C. S. Scarpitta, Health Phys., 68 (1995) 332.

    CAS  Google Scholar 

  17. H. L. Lucas Rev. Sci. Instrum., 28 (1957) 680.

    Article  CAS  Google Scholar 

  18. C. J. Passo, G. T. Cook, Handbook of Environmental Liquid Scintillation Spectrometry, Packard Instrument Company, 1994, p. 8.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canoba, A.C., López, F.O. & Oliveira, A.A. Radon determination by activated charcoal adsorption and liquid scintillation measurement. J Radioanal Nucl Chem 240, 237–241 (1999). https://doi.org/10.1007/BF02349160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02349160

Keywords

Navigation