Skip to main content
Log in

Sorption behavior of Sn(II) onto Haro river sand from aqueous acidic solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The sorption behavior of Sn(II) onto Haro river sand has been examined with respect to nature of electrolyte, agitation time, dosage of sorbent and concentration of sorbate. Maximum sorption (95.5%) has been achieved from 0.034M hydrochloric acid solution after equilibrating sorbate (2·10−5M) and sorbent (50 mg) for 120 minutes at aV/W ratio of 90 cm3·g−1. The kinetic data have been subjected to Morris-Weber and Lagergren equations. The kinetics of sorption proceeds a two stage process consisting of a relatively slow initial uptake followed by a much rapid increase in the sorption. The rate constant of intraparticle transport, Kd, comes out to be 8.75·10−8 mol·g−1·min−1/2 and the first order rate constant for sorption is 0.0416 min−1. The sorption data of Sn(II) onto Haro river sand followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) type isotherms. The Langmuir constant,Q, related to sorption capacity and,b, related to sorption energy are computed to be 10.6±1.1 μmol·g−1 and 1123±137 dm3·mol−1, respectively. The D-R isotherm yields the values ofC m=348±151 μmol·g−1 and β=−0.01044±0.0008 mol2·kJ−2 and ofE=6.9±0.3 kJ·mol−1. In all three isotherms correlation factor (γ) is ≥0.99. The influence of common anions and cations on the sorption has been investigated. Zn(II), Mg(II), oxalate, Pb(II), Mn(II) and tartrate reduce the sorption significantly whereas Fe(II) causes substantial increase in the sorption. It is essential that all ions causing a decrease in the sorption of Sn(II) must be absent from the sorptive solution otherwise low sorption yields would result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Hasany, M. H. Chaudhary, Ads. Sci. Technol., 12 (1995) 307.

    CAS  Google Scholar 

  2. S. M. Hasany, M. H. Chaudhary, Appl. Radiation Isotopes, 47 (1996) 467.

    Article  CAS  Google Scholar 

  3. S. M. Hasany, S. J. Khurshid, Appl. Radiation Isotopes, 48 (1997) 143.

    Article  CAS  Google Scholar 

  4. S. M. Hasany, M. H. Chaudhary, J. Radioanal. Nucl. Chem., 230 (1998) 11.

    CAS  Google Scholar 

  5. M. Hasany, E. Haq, S. B. Butt, Sep. Sci. Technol., 21 (1986) 1125.

    CAS  Google Scholar 

  6. W. J. Weber, J. C. Morris, J. San. Eng. Div. ASEC, 89 (SA2) 1963, p. 31.

    Google Scholar 

  7. S. Lagergren, B. K. Seven, Vatenkapsakad Handl., 1898, p. 24.

  8. D. Reichenburg, J. Am. Chem. Soc., 75 (1953) 589.

    Google Scholar 

  9. G. McKay, H. S. Blair, J. K. Gardner, J. Appl. Polym. Sci., 27 (1982) 3043.

    CAS  Google Scholar 

  10. M. M. Dubinin, L. V. Radushkevich, Proc. Acad. Sci. USSR, Phys. Chem. Sect., 55 (1947) 331.

    Google Scholar 

  11. J. P. Hobson, J. Phy. Chem., 73 (1969) 2720.

    CAS  Google Scholar 

  12. F. Helfferich, Ion-Exchanger, McGrawHill, New York, 1962, p. 166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasany, S.M., Khurshid, S.J. Sorption behavior of Sn(II) onto Haro river sand from aqueous acidic solutions. J Radioanal Nucl Chem 240, 25–29 (1999). https://doi.org/10.1007/BF02349132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02349132

Keywords

Navigation