Medical Electron Microscopy

, Volume 26, Issue 1, pp 65–75 | Cite as

Ultrastructural effects of immobilization on rat muscle spindles

  • Hiroshi Kameda


The ultrastructure of rat muscle spindles was examined after the anterior tibial muscles had been immobilized in a plaster cast. There was an increase in the number of collagen fibrils and external laminae around the outer capsules and in the intracapsular space 2 weeks after immobilization. The changes in the intrafusal muscle fibers within 4 weeks included disorientation of myofilaments. After 6 weeks, Z bands had become disarranged, and there was vacuolar degeneration of the sarcoplasmic reticulum in some fibers. Myelin sheaths of many of the myelinated nerve fibers (especially the thick ones, which were probably sensory nerve fibers) had degenerated within 2 weeks. These results indicate that immobilization of skeletal muscles affects not only extrafusal muscle fibers but also the structure of the muscle spindle.

Key words

Ultrastructure Rats Muscle spindles Immobilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Bruce-Gregorios, J. andChou, S.M.: Core myofibers and related alterations induced in rats' soleus muscle by immobilization in shortened position.J. Neurol. Sci. 63, 267–275 (1984).CrossRefPubMedGoogle Scholar
  2. 2).
    Cooper, R.R.: Alterations during immobilization and regeneration of skeletal muscle in cats.J. Bone Jt. Surg. 54-A, 919–953 (1972).Google Scholar
  3. 3).
    Tomanek, R.J. andLund, D.D.: Degeneration of different types of skeletal muscle fibres. II. Immobilization.J. Anat. 118, 531–541 (1974).PubMedGoogle Scholar
  4. 4).
    Józsa, L., Kvist, M., Kannus, P. andJärvinen, M.: The effect of tenotomy and immobilization on muscle spindles and tendon organs of rat calf muscles: a histochemical and morphometrical study.Acta Neuropathol. 76, 465–470 (1988).CrossRefPubMedGoogle Scholar
  5. 5).
    Maier, A., Eldred, E. andEdgerton, V.R.: The effects on spindles of muscle atrophy and hypertrophy.Exp. Neurol. 37, 100–123 (1972).CrossRefPubMedGoogle Scholar
  6. 6).
    Patel, A.N., Razzak, Z.A. andDastur, D.K.: Disuse atrophy of human skeletal muscles.Arch. Neurol. 20, 413–421 (1969).PubMedGoogle Scholar
  7. 7).
    Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy (Abstract).J. Cell Biol. 27, 137–138 (1965).Google Scholar
  8. 8).
    Banks, R.W., Harker, D.W. andStacey, M.J.: A study of mammalian intrafusal muscle fibres using a combined histochemical and ultrastructural technique.J. Anat. 123, 783–796 (1977).PubMedGoogle Scholar
  9. 9).
    Ovalle, W.K., Jr.: Fine structure of rat intrafusal muscle fibers: the polar region.J. Cell Biol. 51, 83–103 (1971).CrossRefPubMedGoogle Scholar
  10. 10).
    Ovalle, W.K., Jr.: Fine structure of rat intrafusal muscle fibers: the equatorial region.J. Cell Biol. 52, 382–396 (1972).CrossRefPubMedGoogle Scholar
  11. 11).
    Ovalle, W.K., Jr.: Motor nerve terminals on rat intrafusal muscle fibres, a correlated light and electron microscopic study.J. Anat. 111, 239–252 (1972).PubMedGoogle Scholar
  12. 12).
    Uehara, Y.: Unique sensory endings in rat muscle spindles.Z. Zellforsch. 136, 511–520 (1973).CrossRefPubMedGoogle Scholar
  13. 13).
    Walro, J.M. andKucera, J.: Sharing of sensory terminals between the dynamic bag1 and static bag2 fibers in the rat muscle spindle.Brain Res. 425, 311–318 (1987).CrossRefPubMedGoogle Scholar
  14. 14).
    Honjin, R. andTakahashi, A.: Electron microscopy of nerve fibers. VI. On the myelin changes in the peripheral myelinated nerve fibers during Wallerian degeneration.J. Electron Microsc. 11, 139–156 (1962).Google Scholar
  15. 15).
    Miller, T.W. andHikida, R.S.: Effects of short-term denervation on avian muscle spindle structure.Acta Neuropathol. (Berl.) 70, 127–134 (1986).CrossRefGoogle Scholar
  16. 16).
    Schröder, J.M.: The fine structure of de- and reinnervated muscle spindles. II. Regenerated sensory and motor nerve terminals.Acta Neuropathol. (Berl.) 30, 129–144 (1974).Google Scholar
  17. 17).
    Schröder, J.M., Kemme, P.T. andScholz, L.: The fine structure of denervated and reinnervated muscle spindles: morphometric study of intrafusal muscle fibers.Acta Neuropathol. (Berl.) 46, 95–106 (1979).CrossRefGoogle Scholar
  18. 18).
    James, N.T. andMeek, G.A.: Ultrastructure of muscle spindles in dystrophic mice.Nature,254, 612–613 (1975).CrossRefPubMedGoogle Scholar
  19. 19).
    Ovalle, W.K. andDow, P.R.: Alterations in muscle spindle morphology in advanced stages of murine muscular dystrophy.Anat. Rec. 216, 111–126 (1986).CrossRefPubMedGoogle Scholar
  20. 20).
    Matsumoto, D.E. andBaker, J.H.: Degeneration and alteration of axons and intrafusal muscle fibers in spindles following tenotomy.Exp. Neurol. 97, 482–498 (1987).CrossRefPubMedGoogle Scholar
  21. 21).
    Boyd, I.A.: The structure and innervation of the nuclear bag muscle fibre system and the nuclear chain muscle fibre system in mammalian muscle spindles.Philos. Trans. R. Soc. Lond. B Biol. Sci. 245, 81–136 (1962).Google Scholar
  22. 22).
    Malathi, S. andBatmanabane, M.: Effects of varying periods of immobilization of a limb on the morphology of a peripheral nerve.Acta Morphol. Neerl. Scand. 21, 185–198 (1983).PubMedGoogle Scholar
  23. 23).
    Esaki, K.: Morphological study of muscle spindle in atrophic muscle induced by immobilization with plaster cast.Nagoya Med. J. 12, 185–210 (1966).PubMedGoogle Scholar
  24. 24).
    Diwan, F.H. andMilburn, A.: The effects of temporary ischaemia on rat muscle spindles.J. Embryol. Exp. Morphol. 92, 223–254 (1986).PubMedGoogle Scholar

Copyright information

© The Clinical Electron Microscopy Society of Japan 1993

Authors and Affiliations

  • Hiroshi Kameda
    • 1
  1. 1.Department of Orthopedic SurgeryWakayama Medical CollegeWakayamaJapan

Personalised recommendations