Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina

Technical Note


It is of the utmost importance to increase the activity of bone cells on the surface of materials used in the design of orthopaedic implants. Increased activity of such cells can promote either integration of these materials into surrounding bone or complete replacement with naturally produced bone if biodegradable materials are used. Osteoblasts are bone-producing cells and, for that reason, are the cells of interest in initial studies of new orthopaedic implants. If these cells are functioning normally, they lay down bone matrix onto both existing bone and prosthetic materials implanted into the body. It is generally accepted that a successful material should enhance osteoblast function, leading to more bone deposition and, consequently, increased strength of the interface between the material and juxtaposed bone. The present study provided the first evidence of greater osteoblast function on carbon and alumina formulations that mimic the nano-dimensional crystal geometry of hydroxyapatite found in bone.


Adhesion Nanomaterials Carbon fibres Alumina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. M., Gristina, A. G., Hanson, S. R., Harker, L. A., Johnson, R. J., Merritt, K., Naylor, P. T., andSchoen, F. J. (1996): ‘Host reactions to biomaterials and their evaluation’, inRatner, B. D., Hoffman, A. S., Shoen, F. J., andLemons, J. E. (Eds): ‘Biomaterials science: an introduction to materials in medicine’ (Academic Press, London, 1996), pp. 165–215Google Scholar
  2. Coathup, M. J., Blunn, G. W., Flynn, N., Williams, C., andThomas, N. P. (2001): ‘A comparison of bone remodeling around hydroxyapatite-coated, porous-coated and grit-blasted hip replacements retrieved at post-mortem’,J. Bone & Joint Surg. Brit.,83, pp. 118–123Google Scholar
  3. Dee, K. C., Rueger, D. C., Andersen, T. T., andBizios, R. (1996): ‘Conditions which promote mineralization at the bone-implant interface: a modelin vitro study’,Biomaterials,17, pp. 209–215CrossRefGoogle Scholar
  4. Elias, K. E., Price, R. L., andWebster, T. J. (2001): ‘Enhanced functions of osteoblasts on carbon nanofiber compacts’,Biomaterials Google Scholar
  5. Gutwein, L. G., Tepper, F., andWebster, T. J. (2002): ‘Increased osteoblast function on nanofibered alumina’,American Ceramic Society 26th Annual Meeting Conf. Proc. Google Scholar
  6. Kaplan, F. S., Hayes, W. C., Keaveny, T. M., Boskey, A., Einhorn, T. A., Iannotti, J. P., andSimon, S. P. (1994): ‘Orthopaedic basic science’ (American Academy of Orthopaedic Surgeons, Columbus, Ohio, 1994), pp. 127–185Google Scholar
  7. Kay, S., Thapa, A., Haberstroh, K. M., andWebster, T. J. (2002): ‘Nanostructured polymer: nanophase ceramic composites enhance osteoblast and chondrocyte adhesion’,Tissue Eng.,8, pp. 753–761CrossRefGoogle Scholar
  8. Ma, P. X., andZhang, R. (1999): ‘Synthetic nano-scale fibrous extracellular matrix’,J. Biomed. Mater. Res.,46, pp. 60–72CrossRefGoogle Scholar
  9. Miller, D. M., Thapa, A., Haberstroh, K. M., andWebster, T. J. (2002): ‘Anin vitro study of nano-fiber polymers for guided vascular regeneration’, Materials Research Society Symposium Proc.,711, pp. GG3.2.1-GG3.2.4Google Scholar
  10. Montgomery, D. C. (Ed) (1991): ‘Design and analysis of experiments’ (John Wiley & Sons, Inc., New York, 1991), pp. 28–30Google Scholar
  11. Ogiso, M., Yamashita, Y., andMatsumoto, T. (1998): ‘Differences in microstructural characteristics of dense HA and HA coating’,J. Biomed. Mater. Res.,41, pp. 296–303CrossRefGoogle Scholar
  12. Park, J. B., andLakes, R. S. (1992): ‘Biomaterials: an introduction’ (Plenum Press, New York, London, 1992)Google Scholar
  13. Price, R. L., Elias, K. L., Haberstroh, K. M., andWebster, T. J. (2001): ‘Small diameter, high surface energy carbon nanofiber formulations that selectively increase osteoblast function’, Mater. Res. Soc. Spring 2001 Meeting Conf. Proc.Google Scholar
  14. Rodriguez, N. M. (1993): ‘A review of catalytically grown carbon nanofibers’,J. Mater. Res.,8, pp. 3233–3250Google Scholar
  15. Tepper, F., Lerner, M., andGinley, D. (2001): ‘Nanosized alumina fibers’,Am. Ceramic Soc. Bull.,80, pp. 57–60Google Scholar
  16. Thapa, A., Webster, T. J., andHaberstroh, K. M. (2002): ‘An investigation of nano-structured polymers for use as bladder tissue replacement constructs’,Materials Research Society Symposium Proceedings,711, pp. GG3.4.1-GG3.4.6Google Scholar
  17. Webster, T. J. (2001): ‘Nanophase ceramics: the future orthopedic and dental implant material’,Adv. Chem. Eng.,27, pp. 125–166Google Scholar
  18. Webster, T. J., Siegel, R. W., andBizios, R. (2001a): ‘Nanoceramic surface roughness enhances osteoblast and osteoclast functions for improved orthopaedic/dental implant efficacy’,Scripta Materialia,44, pp. 1639–1642CrossRefGoogle Scholar
  19. Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R. W., andBizios, R. (2001b): ‘Enhanced function of osteoblasts on nanophase ceramics’,Biomaterials,21, pp. 1803–1810Google Scholar

Copyright information

© IFMBE 2003

Authors and Affiliations

  • R. L. Price
    • 1
  • K. M. Haberstroh
    • 1
  • T. J. Webster
    • 1
  1. 1.Department of Biomedical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations