Monitoring the biomechanical response of individual cells under compression: A new compression device

  • E. A. G. Peeters
  • C. V. C. Bouten
  • C. W. J. Oomens
  • F. P. T. Baaijens


Skeletal muscle cells are sensitive to sustained compression, which can lead to the development of pressure sores. Although it is known that this type of tissue breakdown depends on the magnitude and duration of the applied load, the exact relationship between cell deformation and damage remains unclear. To gain more insight into this process, a method has been developed, that incorporates the use of a new loading device and confocal microscopy. The loading device is able to compress individual cells, either statically or dynamically, while measuring the resulting forces. Experiments can be performed under ideal environmental conditions, comparable with those of a CO2 incubator. First compression experiments on C2C12 mouse myoblasts showed the shape changes that cells undergo during static compression by the loading device. Calculations using the three-dimensional confocal images showed no change in volume and an increase in the surface area of the cell as a result of compression. The device presented here provides a useful way to monitor the biomechanical response of skeletal muscle cells during long-term compression experiments. Therefore it will contribute to the knowledge about strain-induced cell damage, as seen in pressure sores and other mechanically induced clinical conditions.


Cell mechanics Loading device Compression Confocal microscopy Skeletal muscle Pressure sores 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbenel, J. C. (1991): ‘Pressure management’,Prosthet. Orthot. Int.,15, pp. 225–231Google Scholar
  2. Bluhm, W. F., McCulloch, A. D., andLew, W. Y. W. (1995): ‘Active force in rabbit ventricular myocytes’,J. Biomech.,9, pp. 1119–1122Google Scholar
  3. Bouten, C. V. C., Bosboom, E. M. H., andOomens, C. W. J. (1999): ‘The aetiology of pressure sores: a tissue and cell mechanics approach’, invan der Woude, L. H. V. (Ed.): ‘Biomedical aspects of manual wheelchair propulsion, Assistive technology research series, vol. 5’ (IOS, Amsterdam, 1999), pp. 52–62Google Scholar
  4. Bouten, C. V. C., Knight, M. M., Lee, D. A., andBader, D. L. (2001): ‘Compressive deformation and damage of muscle cell subpopulations in a model system’,Ann. Biomed. Eng.,29, pp. 153–163CrossRefGoogle Scholar
  5. Brown, T. D. (2000): ‘Techniques for mechanical stimulation of cellsin vitro: a review’,J. Biomech.,33, pp. 3–14CrossRefGoogle Scholar
  6. Caille, N., Thoumine, O., Tardy, Y., andMeister, J.-J. (2002): ‘Contribution of the nucleus to the mechanical properties of endothelial cells’,J. Biomech.,35, pp. 177–187CrossRefGoogle Scholar
  7. Caplan, A., Carlson, B., Faulkner, J., Fischman, D., andGarett, W. (1988): ‘Skeletal muscle’, inWoo, S.L.-Y., andBuckwalter, J. A., (Eds.). Injury and repair of the musculoskeletal soft tissues’ (American Academy of Orthopaedic Surgeons, Park Ridge, 1988), pp. 213–291Google Scholar
  8. Chen, C. S., andIngber, D. E. (1999): ‘Tensegrity and mechanoregulation: from skeleton to cytoskeleton’,Osteoarthrit. Cartil.,7, pp. 81–94Google Scholar
  9. Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., andTsien, R. Y. (1995): ‘Understanding, improving and using green fluorescent proteins’,Trends Biochem. Sci.,20, pp. 448–455CrossRefGoogle Scholar
  10. Daniel, R. K., Priest, D. L., andWheatley, D. C. (1982): ‘Etiologic factors in pressure sores: An experimental model’,Med. Rehabil.,62, pp. 492–498Google Scholar
  11. Davies, P. F., andTripathi, S. C. (1993): ‘Mechanical stress mechanisms and the cell: an endothelial paradigm’,Circ. Res.,72, pp. 239–245Google Scholar
  12. Dong, C., Skalak, R., Sung, K., Schmid-Schönbein, G., andChien, S. (1988): ‘Passive deformation analysis human leukocytes’,J. Biomech. Eng.,110, pp. 27–36Google Scholar
  13. Elson, E. (1988): ‘Cellular mechanics as an indicator of cytoskeletal structure and function’,Ann. Rev. Biophys. Biophys. Chem.,17, 397–430CrossRefGoogle Scholar
  14. Folch, A., andToner, M. (2000): ‘Microengineering of cellular interactions’,Ann. Rev. Biomed. Eng.,2, pp. 227–256CrossRefGoogle Scholar
  15. Frangos, J. (1993): ‘Physical forces and the mammalian cell’ (Academic Press, London, 1993)Google Scholar
  16. Galbraith, C. G., Skalak, R., andChien, S. (1998): ‘Shear stress induces spatial reorganization of the endothelial cell cytoskeleton’,Cell Motil. Cytoskeleton,40, pp. 317–330CrossRefGoogle Scholar
  17. Guilak, F. (1995): ‘Compression-induced changes in the shape and volume of the chondrocyte nucleus’,J. Biomech.,28, pp. 1529–1541CrossRefGoogle Scholar
  18. Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T., andSambongi, T. (2000): ‘Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton’,Ultramicr.,82, pp. 253–258Google Scholar
  19. Ingber, D. E. (1997): ‘Tensegrity: the architectural basis of cellular mechanotransduction’,Ann. Rev. Physiol.,59, pp. 575–599Google Scholar
  20. Komuro, I., Katoh, Y., Kaida, T., Shibazaki, Y., Kurabayashi, M., Hoh, E., Takaku, F., andYazaki, Y. (1991): ‘Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes’,J. Biol. Chem.,266, pp. 1265–1268Google Scholar
  21. Krouskop, T. A. (1983): ‘A synthesis of the factors that contribute to pressure sore formation’,Med. Hyp.,11, pp. 255–267Google Scholar
  22. McMahon, D. K., Anderson, P. A. W., Nassar, R., Bunting, J. B., Saba, Z., Oakeley, A. E., andMalouf, N. N. (1994): ‘C2C12 cells: biophysical, biochemical, and immunocytochemical properties’,Am. J. Physiol.,266, pp. C1795–1802Google Scholar
  23. Moore, S. W. (1994): ‘A fiber optic system for measuring dynamic mechanical properties of embryonic tissues’,IEEE Trans. Biomed. Eng.,41, pp. 45–50CrossRefGoogle Scholar
  24. Nola, G. T., andVistnes, L. M. (1980): ‘Differential response of skin and muscle in the experimental production of pressure sores’,Plast. Reconst. Surg.,66, pp. 728–733Google Scholar
  25. Petersen, N. O., McConnaughey, W. B., andElson, E. L. (1982): ‘Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B’,Cell Biol.,79, pp. 5327–5331Google Scholar
  26. Ra, H. J., Picart, C., Feng, H., Sweeney, H. L., andDischer, D. E. (1999): ‘Muscle cell peeling from micropatterned collagen: direct probing of focal and molecular properties of matrix adhesion’,J. Cell Sci.,112, pp. 1425–1436Google Scholar
  27. Sato, M., Theret, D. P., Wheeler, L. T., Ohshima, N., andNerem, R. M. (1990): ‘Application of the micropipette technique of the measurement of cultured porcine aortic endothelial cell viscoelastic properties’,J. Biomech. Eng.,112, pp. 263–268Google Scholar
  28. Thoumine, O., Ott, A., Cardoso, O., Meister, J.-J. (1999a): ‘Microplates: a new tool for manipulation and mechanical perturbation individual cells’,J. Biochem. Biophys. Methods,39, pp. 47–62CrossRefGoogle Scholar
  29. Thoumine, O., Cardoso, O., andMeister, J.-J. (1999b): ‘Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study’,Eur. Biophys. J.,28, pp. 222–234CrossRefGoogle Scholar
  30. Vandenburgh, H. (1992): ‘Mechanical forces and their second messengers in stimulating cell growthin vitro’,Am. J. Physiol.,262, R350-R355Google Scholar
  31. Wang, N., Butler, J., andInber, D. E. (1993): ‘Mechanotransduction across the cell surface and through the cytoskeleton’,Science,260, pp. 1124–1127Google Scholar
  32. Yoshikawa, Y., Yasuike, T., Yagi, A., andYamada, T. (1999): ‘Transverse elasticity of myofibrils of rabbit skeletal muscle studied by atomic force microscopy’,256, pp. 13–19Google Scholar
  33. Zhang, Z., Fernczi, M., Lush, A., andThomas, C. (1991): ‘A novel micromanipulation technique for measuring the bursting strength of single mammalian cells’,Appl. Microbiol. Biotech.,36, pp. 208–210CrossRefGoogle Scholar
  34. Zhu, C., Bao, G., andWang, N. (2000): ‘Cell mechanics: mechanical response, cell adhesion, and molecular deformation’,Ann. Rev. Biomed. Eng.,2, pp. 189–226CrossRefGoogle Scholar

Copyright information

© IFMBE 2003

Authors and Affiliations

  • E. A. G. Peeters
    • 1
  • C. V. C. Bouten
    • 1
  • C. W. J. Oomens
    • 1
  • F. P. T. Baaijens
    • 1
  1. 1.Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations