Medical Electron Microscopy

, Volume 29, Issue 3–4, pp 137–144 | Cite as

Photodynamic treatment for atherosclerotic plaques of the rabbit abdominal aorta by the laparoscopical approach using a pheophorbide derivative

  • Takashi Saito
  • Junichi Hayashi
  • Hirofumi Kawabe
  • Katsuo Aizawa


A new photosensitizer, PH-1126, was administered intravenously into the ear veins of cholesterol-fed atherosclerotic rabbits at a dose of 1 mg/kg of body weight. At 24 hr after PH-1126 administration, the atherosclerotic abdominal aorta was irradiated with a krypton ion laser with a wavelength of 647 nm by 100 J/cm2 by the laparoscopical approach. Twenty-four hours later, the abdominal aorta irradiated by the laser beam was excised for histological analysis. In the atherosclerotic plaques with photodynamic treatment, damaged foam cells were observed by scanning electron microscopy and transmission electron microscopy. Some of these cells were exposed to the aortic lumen. No significant changes were shown in the abdominal aorta either with plaques not injected with PH-1126 or without plaques after photodynamic treatment. These findings suggest that atherosclerotic plaques of the abdominal aorta could be selectively degraded by laparoscopical photodynamic treatment.

Key words

Photodynamic treatment PH-1126 Laparoscopical approach Atherosclerotic plaque Foam cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Dougherty, T.J., Kaufman, J.E., Goldearb, A., Weishaupt, K.R., Boyle, D. andMittleman, A.: Photoradiation therapy for the treatment of malignant tumors.Cancer Res. 38, 2628–2635 (1978).PubMedGoogle Scholar
  2. 2).
    Dougherty, T.J., Lawrence, G., Kaufman, J.H., Boyle, D., Weishaupt, K.R. andGoldfarb, A.: Photoradiation in the treatment of recurrent breast carcinoma.J. Natl. Cancer Inst. 62, 231–237 (1979).PubMedGoogle Scholar
  3. 3).
    Weishaupt, K.R., Gomer, C.J. andDougherty, T.J.: Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor.Cancer Res. 36, 2326–2329 (1976).PubMedGoogle Scholar
  4. 4).
    Kimel, S., Tromberg, B.J., Roberts, W.G. andBerns, M.W.: Singlet oxygen generation of porphyrins, chlorins, and phthalocyanines.Photochem. Photobiol. 50, 175–183 (1989).PubMedGoogle Scholar
  5. 5).
    Spears, J.R., Serur, J., Shropshire, D. andPaulin, S.: Fluorescence of experimental atheromatous plaques with hematoporphyrin derivative.J. Clin. Invest. 71, 395–399 (1983).PubMedGoogle Scholar
  6. 6).
    Litvack, F., Grundfest, W.S., Forrssyer, J.S., Fishbein, M.C., Swan, H.J.C., Corday, E., Rider, D.M., McDermid, I.S., Pacala, T.J. andLaudenslager, J.B.: Effects of hematoporphyrin derivative and photodynamic therapy on atherosclerotic rabbits.Am. J. Cardiol. 56, 667–671 (1985).CrossRefPubMedGoogle Scholar
  7. 7).
    Pollock, M.C., Eugene, J., Hammer-Wilson, M. andBerns, M.W.: Photosensitization of experimental atheromas by porphyrins.J. Am. Coll. Cardiol. 9, 639–646 (1987).PubMedGoogle Scholar
  8. 8).
    Gomer, C.J., Doiron, D.N., Rucker, N., Razum, N.J. andFountain, S.W.: Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing.Photochem. Photobiol. 39, 365–368 (1984).PubMedGoogle Scholar
  9. 9).
    Gomer, C.J.: Preclinical examination of first and second generation photosensitizers used in photodynamic therapy.Photochem. Photobiol. 54, 1093–1107 (1991).PubMedGoogle Scholar
  10. 10).
    Kreimer-Birnbaum, M.: Modified porphyrins, chlorins, phthalocyanines, and purpurins: second-generation photosensitizers for photodynamic therapy.Semin. Hematol. 26, 157–173 (1989).PubMedGoogle Scholar
  11. 11).
    Roberts, W.G., Shiau, F.-Y., Nelson, J.S., Smith, K.M. andBerns, M.W.:In vitro characterization of monoaspartyl chlorin e6 and diaspartyl chlorin e6 for photodynamic therapy.J. Natl. Cancer Inst. 80, 330–336 (1988).PubMedGoogle Scholar
  12. 12).
    Gomer, G.J. andFerrario, A.: Tissue distribution and photosensitizing properties of mono-l-aspartyl chlorin e6 in a mouse tumor model.Cancer Res. 50, 3985–3990 (1990).PubMedGoogle Scholar
  13. 13).
    Nishiwaki, Y., Nakamura, S. andSakaguchi, S.: New method of photosensitizer accumulation for photodynamic therapy in an experimental liver tumor.Lasers Surg. Med. 9, 259–263 (1989).Google Scholar
  14. 14).
    Yano, T., Uozumi, T., Kawamoto, K., Mukada, K., Onda, J., Ito, A. andFujimoto, N.: Photodynamic therapy for rat pituitary tumorin vitro andin vivo using pheophorbide a and white light.Lasers Surg. Med. 11, 179–182 (1991).Google Scholar
  15. 15).
    Kawabe, H., Tamachi, Y., Aizawa, K., Okunaka, T., Ohtani, T., Kato, H. andHayata, Y.: Photodynamic effects of quaternary ammonium salt derivatives of protoporphyrin derivatives on normal and tumor-bearing mice.Lasers Life Sci. 4, 115–123 (1991).Google Scholar
  16. 16).
    Brasseur, N., Ali, H., Rejean, L.J., Lichard, W., Jacques, R. andJohan, E.L.: Biological activities of phthalocyanines. V. Photodynamic therapy of EMT-6 mammary tumors in mice with sulfonated phthalocyanines.Photochem. Photobiol. 45, 417–426 (1987).Google Scholar
  17. 17).
    Kawabe, H., Aizawa, K., Okunaka, T., Ohtani, T., Ishi, T., Kato, H. andHayata, Y.: A pheophorbide derivative as a photosensitizer for photodynamic therapy.In: Photodynamic Therapy and Biomedical Lasers (Spinelli, P., Dal Fante, M. andMarchesini, R. ed.), p. 820–825, Elsevier Science Publishers, Amsterdam, 1992.Google Scholar
  18. 18).
    Auler, H. andBanzer, G.: Untersuchungen über die Rolle der Porphyrine bei geschwulstkranken Menschen und Tieren.Z. Krebsforsch. 53, 65–68 (1942).Google Scholar
  19. 19).
    Figge, F.H.J., Weiland, G.S. andManganiello, L.O.J.: Cancer detection and therapy: affinity of neoplastic, embryonic and traumatized tissues for porphyrins and metalloporphyrins.Proc. Soc. Exp. Biol. Med. 68, 640–641 (1948).Google Scholar
  20. 20).
    Diamond, I., McDonagh, A.F., Wilson, C.B., Cranelli, S.G., Nielsen, S. andJaenicke, R.: Photodynamic therapy of malignant tumors.Lancet,2, 1175–1177 (1972).PubMedGoogle Scholar
  21. 21).
    Hayata, Y., Kato, H., Konaka, C., Ono, J. andTakizawa, N.: Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer.Chest,81, 269–277 (1982).PubMedGoogle Scholar
  22. 22).
    Hayata, Y. andKato, H.: Applications of laser phototherapy in the diagnosis and treatment of lung cancer.Jpn. Ann. Thoracic Surg. 3, 203–210 (1983).Google Scholar
  23. 23).
    Rettenmaier, M.A., Berman, M.L., DiSaia, P.J., Burns, R.G., McCullough, J. andBerns, M.W.: Gynecologic uses of photoradiation therapy.In: Advances in Experimental Medicine and Biology (Doiron, D.R. andGomer, C.J. ed.), p. 767–775, Alan R. Liss, New York, 1984.Google Scholar
  24. 24).
    Dougherty, T.J.: Photodynamic therapy (PDT) of malignant tumors.CRC Crit. Rev. Oncol. Hematol. 2, 83–116 (1984).Google Scholar
  25. 25).
    Benson, R.C., Farrow, G.M., Kinsey, J.H., Cortese, D.A., Zinke, H. andUtz, D.C.: Detection and localization ofin situ carcinoma of the bladder with hematoporphyrin derivative.Mayo Clin. Proc. 57, 548–555 (1982).PubMedGoogle Scholar
  26. 26).
    Wile, A.W., Dahlman, A., Burns, R.G. andBerns, M.W.: Laser photoradiation therapy of cancer following hematoporphyrin sensitization.Lasers Med. Surg. 2, 163–168 (1982).Google Scholar
  27. 27).
    Kessel, D. andSykes, E.: Porphyrin accumulation by atheromatous plaques of the aorta.Photochem. Photobiol. 40, 59–61 (1984).PubMedGoogle Scholar
  28. 28).
    Spokojny, A.M., Serur, J.R., Skillman, J. andSpears, J.R.: Uptake of hematoporphyrin derivative by atheromatous plaques: studies in humanin vitro and rabbitin vivo.J. Am. Coll. Cardiol. 8, 1387–1392 (1986).PubMedGoogle Scholar
  29. 29).
    Delettre, E., Brault, D., Bruneval, P., Vever-Bizet, C., Dellinger, M., Delgado, O., Camilleri, J.P., Gaux, J.C. andPeronneau, P.:In vitro uptake of dicarboxylic porphyrins by human atheroma: kinetic and analytical studies.Photochem. Photobiol. 54, 239–246 (1991).PubMedGoogle Scholar
  30. 30).
    Svaasand, L.O.: Optical dosimetry for direct and interstitial photoradiation therapy of malignant tumors.In: Porphyrin Localization and Treatment of Tumors (Doiron, D.R. andGomer, C.J. ed.), p. 91–114, Alan R. Liss, New York, 1984.Google Scholar
  31. 31).
    Ross, R.: The pathogenesis of atherosclerosis — an update.N. Engl. J. Med. 314, 488–500 (1986).PubMedGoogle Scholar
  32. 32).
    Ross, R.: The pathogenesis of atherosclerosis: a perspective for the 1990s.Nature,362, 801–809 (1993).CrossRefPubMedGoogle Scholar
  33. 33).
    Saito, T., Hayashi, J., Sato, H., Kawabe, H. andAizawa, K.: Scanning electron microscopic analysis of acute photodynamic therapy for atherosclerotic plaques of rabbit aorta by using a pheophorbide derivative.J. Clin. Laser Med. Surg. 14, 1–6 (1996).PubMedGoogle Scholar

Copyright information

© The Clinical Electron Microscopy Society of Japan 1996

Authors and Affiliations

  • Takashi Saito
    • 1
  • Junichi Hayashi
    • 2
  • Hirofumi Kawabe
    • 3
  • Katsuo Aizawa
    • 3
  1. 1.Department of Biology, School of MedicineKyorin UniversityMitakaJapan
  2. 2.Department of Gerontology, School of MedicineKyorin UniversityMitakaJapan
  3. 3.Department of PhysiologyTokyo Medical CollegeTokyoJapan

Personalised recommendations