Skip to main content

Nutritional diversity of symbiotic ascidians in a Fijian seagrass meadow

Abstract

In a coastal lagoon of Dravuni Island, Fiji, at least six species of compound ascidians, some of them harboringProchloron as symbiotic algae, were found in aSyringodium-dominated seagrass meadow. Based on their heterotrophic (filrer feeding rates) and autotrophic (photosynthetic) activities, carbon gain of the ascidians was categorized into two groups: (i) supported by heterotrophic metabolism; and (ii) supported by both heterotrophic and autotrophic metabolisms.Didemnum molle, Lissoclinum bistratum andLissolinum voeltzkowi belong to the latter group, and the relative contribution of the autotrophic process was a significant portion of their carbon gain (52–74%). These symbiotic ascidians were found in light microhabitats, while the heterotrophic species occupied shady environments rich in suspended organic materials, such as the sheath surface of the seagrass.

This is a preview of subscription content, access via your institution.

References

  • Aioi K. &Pollard P. (1993) Biomass, leaf growth and loss rate of seagrassSyringodium isoetifolium on Dravuni Island, Fiji.Aquatic Botany 46: 283–292.

    Article  Google Scholar 

  • Alberte R. S., Cheng L. &Lewin R. A. (1986) Photosynthetic characteristics ofProchloron sp./ascidian symbioses. I. Light and temperature responses of the algal symbiont ofLissoclinum patella.Marine Biology 90: 575–587.

    Article  CAS  Google Scholar 

  • Alberte R. S., Cheng L. &Lewin R. A. (1987) Photosynthetic characteristics ofProchloron/ascidian symbioses II. Photosynthesis-irradiance relationships and carbon balance of associations from Palau, Micronesia.Symbiosis 4: 147–170.

    Google Scholar 

  • Barnes R. D. (1980)Invertebrate Zoology. Holt-Saunders Japan Ltd, Tokyo, 592pp.

    Google Scholar 

  • Gauld D. T. (1951) The grazing rate of planktonic copepods.Journal of Marine Biological Association of United Kingdom 29: 695–706.

    Google Scholar 

  • Griffiths D. J. &Thinh L-V (1983) Transfer of photosynthetically fixed carbon between the prokaryotic green algaeProchloron and its ascidian host.Australian Journal of Marine and Freshwater Research 34: 431–440.

    CAS  Google Scholar 

  • Griffiths D. J. &Thinh L-V (1987) Photosynthesis byin situ and isolatedProchloron (Prochlorophyta) associated with Didemnid ascidians.Symbiosis 3: 109–122.

    Google Scholar 

  • Kokie I., Yamamuro M. &Pollard P. C. (1993) Carbon and nitrogen budgets of two ascidians and their symbiont,Prochloron, in a tropical seagrass meadow.Australian Journal of Marine and Fresbwater Research 44: 173–182.

    Google Scholar 

  • Kott, P. (1980) Algal-bearing didemnid ascidians in the Indo-West Pacific.Memoirs of the Queensland Museum 20: 1–47.

    Google Scholar 

  • Kott P. (1981) The ascidians of the reef flat of Fiji.Proceedings of the Linnean Society of New South Wales,105: 147–212.

    Google Scholar 

  • Kott P. (1982) Didemnid-algal symbioses: host species in the Western Pacific with notes on the symbiosis.Micronesica 18: 95–127.

    Google Scholar 

  • Lewin R. A., Cheng I. &Alberte R. S. (1983)Prochloron-ascidian symbioses: photosynthetic potential and productivity.Micronesica 19: 165–170.

    Google Scholar 

  • Nishhira M. & Suzuki T. (1994) Abundance, population structure and microhabitat use of the compound ascidians in a Fijian seagrass bed, with special reference toDidemnum molle. In:Developmental Processes and Materials Flow in Tropical Seagrass Beds (ed. I. Koike) pp. 49–59. Ocean Research Institute, University of Tokyo.

  • Olson R. R. (1986a) Photoadaptations of the Caribbean colonial Ascidian-cyanophyte symbiosisTrididemnum solidum.Biological Bulletin 170: 62–74.

    Google Scholar 

  • Olson R. R. (1986b) Light-enhanced growth of the ascidianDidemnum molle/Prochloron sp. symbiosis.Marine Biology,93: 437–442.

    Article  Google Scholar 

  • Olson R. R. &Porter J. W. (1985)In situ measurement of photosynthesis and respiration in the ascidian-Prochloron symbiosisDidemnum molle.Proceedings of the 5th International Coral Reef Congress 5: 257–262.

    Google Scholar 

  • Pardy R. L. (1984) Oxygen consumption and production by tropical ascidians sumbiotic withProchloron.Comparative Biochemistry and Physiology 79A: 345–348.

    Google Scholar 

  • Parsons T. R., Maita Y. &Lalli C. M. (1984a)A Manual of Chemical and Biological Methods for Seawater Analyses. Pergamon, Oxford, 173pp.

    Google Scholar 

  • Parsons T. R., Takahashi M. &Hargrave B. (1984b)Biological Oceanographic Processes. 3rd ed Pergamon, Oxford, 330pp.

    Google Scholar 

  • Suzuki R. &Ishimaru T. (1990) An improved method for the determination of phytoplankton chlorophyll using N,N-dimethylformamide.Journal of Oceanographic Society of Japan 46: 190–194.

    CAS  Google Scholar 

  • Suzuki T. & Nishihira M. (1994) How does a compound ascidianDidemnum molle remain on unstable substrate? In:Developmental Processes and Materials Flow in Tropical Seagrass Beds (ed. I. Koike) pp. 60–75. Ocean Research Institute, University of Tokyo.

  • Yamamuro M., Koike I. &Iizumi H. (1993) Characteristics of nitrogen and carbon standing stock in a tropical seagrass bed in Fiji.Australian Journal of Marine and Freshwater Research 44: 101–115.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Koike, I., Suzuki, T. Nutritional diversity of symbiotic ascidians in a Fijian seagrass meadow. Ecol. Res. 11, 381–386 (1996). https://doi.org/10.1007/BF02347795

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347795

Key words

  • tropical seagrass bed
  • symbiotic ascidians
  • energy metabolism