Advertisement

Conversion of left ventricular endocardial positions from patient-independent co-ordinates into biplane fluoroscopic projections

  • M. Potse
  • R. Hoekema
  • A. C. Linnenbank
  • A. SippensGroenewegen
  • J. Strackee
  • J. M. T. de Bakker
  • C. A. Grimbergen
Article

Abstract

Electrocardiographic body surface mapping is used clinically to guide catheter ablation of cardiac arrhythmias by providing an estimate of the site of origin of an arrhythmia. The localisation methods used in our group produce results in left-ventricular cylinder co-ordinates (LVCCs), which are patient-independent but hard to interpret during catheterisation in the electrophysiology laboratory. It is preferable to provide these results as three-dimensional (3D) co-ordinates which can be presented as projections in the biplane fluoroscopic views that are used routinely to monitor the catheter position. Investigations were carried out into how well LVCCs can be converted into fluoroscopic projections with the limited anatomical data available in contemporary clinical practice. Endocardial surfaces from magnetic resonance imaging (MRI) scans of 24 healthy volunteers were used to create an appropriate model of the left-ventricular endocardial wall. Methods for estimation of model parameters from biplane fluoroscopic images were evaluated using simulated biplane data created from these surfaces. In addition, the conversion method was evaluated, using 107 catheter positions obtained from eight patients, by computing LVCCs from biplane fluoroscopic images and reconstructing the 3D positions using the model. The median 3D distance between reconstructed positions and measured positions was 4.3 mm.

Keywords

Endocardial catheter mapping Body surface mapping Catheter ablation Biplane fluoroscopy MRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burbank, F., Parish, D., andWexler, L. (1988): ‘Echocardiographic-like angled views of the heart by MR imaging’,J. Comput. Assist. Tomogr.,12, pp. 181–195Google Scholar
  2. Calkins, H., Epstein, A., Packer, D., Arria, A. M., Hummel, J., Gilligan, D. M., Trusso, J., Carlson, M., Luceri, R., Kopelman, H., Wilber, D., Wharton, J. M., andStevenson, W. (2000): ‘Catheter ablation of ventricular tachycardia in patients with structural heart disease using cooled radiofrequency energy: Results of a prospective multicenter study’,J. Am. Coll. Cardiol.,35, pp. 1905–1914CrossRefGoogle Scholar
  3. Dodge, H. T., Sandler, H., Ballew, D., andLord, J. D. (1960): ‘The use of biplane angiocardiography for the measurement of left ventricular volume in man’,Am. Heart J.,60, pp. 762–776Google Scholar
  4. Dove, E. L., Philip, K., Gotteiner, N. L., Vonesh, M. J., Rumberger, J. A., Reed, J. E., Stanford, W., McPherson, D. D., andChandran, K. B. (1994): ‘A method for automatic edge detection and volume computation of the left ventricle from ultrafast computed tomographic images’,Investigat. Radiol.,29, pp. 945–954Google Scholar
  5. Dubuc, M., Nadeau, R., Tremblay, G., Kus, T., Molin, F., andSavard, P. (1993): ‘Pace mapping using body surface potential maps to guide catheter ablation of accessory pathways in patients with Wolff-Parkinson-White syndrome’,Circulation,87, pp. 135–143Google Scholar
  6. Frangi, A. F., Niessen, W. J., andViergever, M. A. (2001): ‘Three-dimensional modeling for functional analysis of cardiac images: A review’,IEEE Trans. Med. Imag.,20, pp. 2–25Google Scholar
  7. Gustavsson, T., Pascher, R., andCaidahl, K. (1993): ‘Model based dynamic 3D reconstruction and display of the left ventricle from 2D cross-sectional echocardiograms’,Comput. Med. Imag. Graph.,17, pp. 273–278CrossRefGoogle Scholar
  8. Hauer, R. N. W., Heethaar, R. M., de Zwart, M. T. W., van Dijk, R. N., van der Tweel, I., Borst, C., andBobles de Medina, E. O. (1986): ‘Endocardial catheter mapping: validation of a cineradiographic method for accurate localization of left ventricular sites’,Circulation,74, pp. 862–868Google Scholar
  9. Hoekema, R., Uijen, G. J. H., van Erning, L., andvan Oosterom, A. (1999): ‘Interindividual variability of multilead electrocardiographic recordings: Influence of heart position’,J. Electrocardiol.,32, pp. 137–148Google Scholar
  10. Leon, L. J., andHoráček, B. M. (1991): ‘Computer model of excitation and recovery in the anisotropic myocardium. II. Excitation in the simplified left ventricle’,J. Electrocardiol.,24, pp. 17–31Google Scholar
  11. Nadkarni, S. K., Boughner, D. R., Drangova, M., andFenster, A. (2000): ‘Three-dimensional echocardiography: Assessment of inter- and intra-operator variability and accuracy in the measurement of left ventricular cavity volume and myocardial mass’,Phys. Med. Biol.,45, pp. 1255–1273CrossRefGoogle Scholar
  12. Nakagawa, H., Yamanashi, W. S., Pitha, J. V., Arruda, M., Wang, X., Ohtomo, K., Beckman, K. J., McClelland, J. H., Lazzara, R., andJackman, W. M. (1995): ‘Comparison ofin vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation’,Circulation,91, pp. 2264–2273Google Scholar
  13. Nielsen, P. M. F., Le Grice, I. J., Smaill, B. H., andHunter, P. J. (1991): ‘Mathematical model of geometry and fibrous structure of the heart’,Am. J. Physiol.,260, pp. H1365-H1378Google Scholar
  14. Peeters, H. A. P., SippensGroenewegen, A., Wever, E. F. D., Ramanna, H., Linnenbank, A. C., Potse, M., Grimbergen, C. A., van Hemel, N. M., Hauer, R. N. W., andRobles de Medina, E. O. (1999): ‘Clinical application of an integrated 3-phase mapping technique for localization of the site of origin of idiopathic ventricular tachycardia’,Circulation,99, pp. 1300–1311Google Scholar
  15. Potse, M., Linnenbank, A. C., Peeters, H. A. P., SippensGroenewegen, A., andGrimbergen, C. A. (2000): ‘Continuous localization of cardiac activation sites using a database of multichannel ECG recordings’,IEEE Trans. Biomed. Eng.,47, pp. 682–689CrossRefGoogle Scholar
  16. Shpun, S., Gepstein, L., Hayam, G., andBen-Haim, S. A. (1997): ‘Guidance of radiofrequency endocardial ablation with real-time three-dimensional magnetic navigation system’,Circulation,96, pp. 2016–2021Google Scholar
  17. Simmers, T. A., Wittkampf, F. H. M., Hauer, R. N. W., andRobles de Medina, E. O. (1994): ‘In vivo ventricular lesion growth in radiofrequency catheter ablation’,PACE,17, pp. 523–531Google Scholar
  18. SippensGroenewegen, A., Spekhorst, H., van Hemel, N. M., Kingma, J. H., Hauer, R. N. W., Janse, M. J., andDunning, A. J. (1990): ‘Body surface mapping of ectopic left and right ventricular activation: QRS spectrum in patients without structural heart disease’,Circulation,82, pp. 879–896Google Scholar
  19. SippensGroenewegen, A., Spekhorst, H., van Hemel, N. M., Kingma, J. H., Hauer, R. N. W., Janse, M. J., andDunning, A. J. (1992): ‘Body surface mapping of ectopic left ventricular activation: QRS spectrum in patients with prior myocardial infarction’,Circ. Res.,71, pp. 1361–1378Google Scholar
  20. Wittkampf, F. H. M., Wever, E. F. D., Derksen, R., Wilde, A. A. M., Ramanna, H., Hauer, R. N. W., andRobles de Medina, E. O. (1999): ‘LocaLisa: New technique for real-time 3-dimensional localization of regular intracardiac electrodes’,Circulation,99, pp. 1312–1317Google Scholar

Copyright information

© IFMBE 2002

Authors and Affiliations

  • M. Potse
    • 1
  • R. Hoekema
    • 2
  • A. C. Linnenbank
    • 3
    • 4
  • A. SippensGroenewegen
    • 5
  • J. Strackee
    • 1
  • J. M. T. de Bakker
    • 4
    • 6
  • C. A. Grimbergen
    • 1
    • 7
  1. 1.Medical Physics DepartmentAcademic Medical CenterAmsterdamThe Netherlands
  2. 2.Clinical Neurophysiology DepartmentUniversity Medical CenterUtrechtThe Netherlands
  3. 3.Heart Lung Center UtrechtUtrechtThe Netherlands
  4. 4.Experimental & Molecular Cardiology Group, Cardiovascular Research InstituteAcademic Medical CenterAmsterdamThe Netherlands
  5. 5.Cardiac Focus Inc.PleasantonUSA
  6. 6.ICINUtrechtThe Netherlands
  7. 7.Control Department, Faculty of Design, Construction & ProductionDelft University of TechnologyDelftThe Netherlands

Personalised recommendations