Medical and Biological Engineering and Computing

, Volume 42, Issue 5, pp 707–711 | Cite as

Stroke volume and systolic time intervals: Beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions

  • G. Cybulski
  • E. Michalak
  • E. Koźluk
  • A. Piątkowska
  • W. Niewiadomski


The aim of the study was to compare stroke volume (SV), ejection time (ET) and pre-ejection period (PEP) measurements obtained using a central haemodynamics ambulatory monitoring device based on impedance cardiography (ICG), in supine and tilted positions (60°), with pulsed Doppler echocardiography as a noninvasive reference method. The Holter-type ICG device was used for off-line, beat-to-beat, automatic determination of SV, ET and PEP. ICG data were compared with those obtained simultaneously using pulsed Doppler echocardiography in the ascending aorta from a suprasternal projection, 1 min before and 10 min after tilting. The tests were performed in 13 young, healthy subjects (six men and seven women, aged 23–33 years). Linear regression between the measured values obtained for all subjects was described by the following formulas: SVicg=13.9+0.813*SVecho (r=0.857 SEE=9.03, n=496), ETicg=16.8+0.987*ETecho (r=0.841, SEE=21.3, n=496), PEPicg=22.8+0/890*PEPecho (r=0.727, SEE=14.6, n=496). The data showed that ambulatory impedance cardiography gives useful absolute values of SV and systolic time intervals measured in supine and tilted positions.


Stroke volume Impedance cardiography Pulsed Doppler Head-up tilt test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonicelli, R., Savonitto, S., Gambini, C., Tomassini, P. F., Sardina, M., andPaciaroni, E. (1991): ‘Impedance cardiography for repeated determination of stroke volume in elderly hypertensives: correlation with pulsed Doppler echocardiography’,Angiology,42, pp 648–653.Google Scholar
  2. Aust, P. E., Belz, G. G., Belz, G., andKoch, W. (1982): ‘Comparison of impedance cardiography for measurement of stroke volume’,Eur. J. Clin. Pharmacol.,23, pp. 475–477.CrossRefGoogle Scholar
  3. Boer, P., Roos, J. C., Geyskes, G. G., andMees, E. J. D. (1979): ‘Measurement of cardiac output by impedance cardiography under various conditions’,Am. J. Physiol.,237, pp. H491-H492Google Scholar
  4. Charloux, A., Lonsdorfer-Wolf, E., Richard, R., Lampert, E., Oswald-Mammosser, M., Mettauer, B., Geny, B., andLonsdorfer, J. (2000): ‘A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the ‘direct’ Fick method’,Eur. J. Appl. Physiol.,82, pp. 313–320CrossRefGoogle Scholar
  5. Christensen, T. B., Jensen, B. V., Hjerpe, J., andKanstrup, I. L. (2000): ‘Cardiac output measured by electric bioimpedance compared with the CO2 rebreathing technique at different exercise levels’,Clin. Physiol.,20 pp. 101–105CrossRefGoogle Scholar
  6. Cybulski, G. (1988): ‘Computer method for automatic determination of stroke volume using impedance cardiography signals’,Acta Physiol. Pol.,39, pp. 494–503Google Scholar
  7. Cybulski, G., Miśkiewicz, Z., Szulc, J., Torbicki, A., Pasierski, T. (1993): ‘A comparison between impedance cardiography and two dimensional echocardiography methods for measurements of stroke volume (SV) and systolic time intervals (STI)’,J. Physiol. Pharmacol.,44 pp. 251–258Google Scholar
  8. Cybulski, G., Ksiazkiewicz, A., Łukasik, W., Niewiadomski, W., andPałko, T. (1995): ‘Ambulatory monitoring device for central hemodynamic and ECG signal recording on PCMCIA flash memory cards’,Comput. Cardiol.,22 pp. 505–507Google Scholar
  9. Cybulski, G., Ziółkowska, E., Ksiazkiewicz, A., Łukasik, W., Niewiadomski, W., Kodrzycka, A., andPałko, T. (1999): ‘Application of impedance cardiography ambulatory monitoring device for analysis of central hemodynamics variability in atrial fibrillation’,Comput. Cardiol.,26 pp. 563–566Google Scholar
  10. Dittmann, H., Voelker, W., Karsch, K. R., andSeipel, L. (1987): ‘Influence of sampling site and flow area on cardiac output measurement by Doppler echocardiography’,J. Am. Coll. Cardiol.,10, pp. 818–823Google Scholar
  11. Drazner, M. H., Thompson, B., Rosenberg, P. B., Kaiser, P. A., Boehrer J. D., Baldwin, B. J., Dries, D. L., andYancy, C. W. (2002): ‘Comparison of impedance cardiography with invasive hemodynamic measurements in patients with heart failure secondary to ischemic or nonischemic cardiomyopathy’,Am. J. Cardiol.,89 pp. 993–995CrossRefGoogle Scholar
  12. Dubin, J., Wallerson, D. C., Cody, R. J., andDevereux, R. B. (1990): ‘Comparative accurancy of Doppler echocardiographic methods for clinical stroke volume determination’,Am. Heart. J.,120, pp. 116–123CrossRefGoogle Scholar
  13. Ebert, T. J., Eckberg, D. L., Vetrovec, G. M., andCowley, M. J. (1984): ‘Impedance cardiograms reliably estimate beat-by-beat changes of left ventricular stroke volume in humans’,Cardiovasc. Res.,18 pp. 354–360Google Scholar
  14. Francis, D. P., Coats, A. J. S., andGibson, D. G. (1999): ‘How high can correlation coefficient be? Effect of limited reproducibility on common cardiological variables’,Int. J. Cardiol.,69, pp. 185–199CrossRefGoogle Scholar
  15. Gardin, J. M., Tobis, J. M., Dabestani, A., Smith, C., Elkayam, U., Castleman, E., White, D., Allfie, A., andHenry, W. L. (1985): ‘Superiority of two-dimensional measurements of aortic vessel diameter in Doppler echocardiographic estimates of left ventricular stroke volume’,J. Am. Coll. Cardiol.,6 pp. 66–74Google Scholar
  16. Geddes, L. A., andSadler, C. (1972): ‘The specific resistance of blood at body temperature’,Med. Biol. Eng.,5 pp. 336–339Google Scholar
  17. Judy, W. V., Langley, F. M., Mccowen, K. D., Stinned, D. M., Backer, L. E., andJohnson, P. C. (1969): ‘Comparative evaluation of the thoracic impedance and isotope dilution methods for measuring cardiac output’,Aerospace Med.,40, pp. 532–536.Google Scholar
  18. Kenny, R. A., Ingram, A., Bayliss, J., andSutton, R. (1986): ‘Head-up tilt: a useful test for investigating unexplained syncope’,Lancet,2, pp. 1352–1354Google Scholar
  19. Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., andMattson, R. H. (1966): ‘Development and evaluation of an impedance cardiac output system’,Aerospace Med.,37 pp. 1208–1212Google Scholar
  20. Loutfi, H., andNishimura, R. A. (1994): ‘Quantitative evaluation of left ventricular systolic function by Doppler echocardiographic techniques’,Echocardiography,11 pp. 305–314Google Scholar
  21. Milsom, I., Sivertsson, R., Biber, B., andOlsson, T. (1982): ‘Measurement of stroke volume with impedance cardiography’,Clin. Physiol.,2, 409–417Google Scholar
  22. Muzzi, M., Jeutter, D. C. andSmith, J. J. (1986): ‘Computerautomated impedance-derived cardiac indexes’,IEEE Trans. Biomed. Eng.,33, 42–47Google Scholar
  23. Nishimura, R. A., Callahan, M. J., Schaff, H. V., Ilstrup, D. M., Miller, B. A., andTajik, A. J. (1984): ‘Noninvasive measurement of cardiac output by continuous-wave Doppler echocardiography: initial experience and review of the literature,’Mayo Clin. Proc.,59, pp. 484–489Google Scholar
  24. Rosenberg, P., andYancy, C. W. (2000): ‘Noninvasive assessment of hemodynamics: an emphasis on bioimpedance cardiography’,Current Opin. Cardiol.,15 pp. 151–155Google Scholar
  25. Scherhag, A. W., Pfleger, S., De Mey, C., Schreckenberger, A. B., Staedt, U., andHeene, D. L. (1997): ‘Continuous measurement of hemodynamic alterations during pharmacologic cardiovascular stress using automated impedance cardiography’,J. Clin. Pharmacol.,37 pp. 21S-28SGoogle Scholar
  26. Sherwood, A., Mcfetridge, J., andHutcheson, J. S. (1998): ‘Ambulatory impedance cardiography: a feasibility study’,J. Appl. Physiol.,85 pp. 2365–2369Google Scholar
  27. Smorawinski, J., Nazar, K., Kaciuba-Uscilko, H., Kaminska, E., Cybulski, G., Kodrzycka, A., Bicz, B., andGreenleaf J. E. (2001): ‘Effects of 3-day bed rest on physiological responses to graded exercise in athletes, and sedentary men’,J. Appl. Physiol.,91, pp. 249–257Google Scholar
  28. Stewart, W. J., Jiang, L., Mich, R., Pandian, N., Guerrero, J. L., andWeyman, A. E. (1985): ‘Variable effects of changes in flow rate through the aortic, pulmonary and mitral valves on valve area and flow velocity: impact on quantitative Doppler flow calculations’,J. Am. Coll. Cardiol.,6, pp. 653–662Google Scholar
  29. Willemsen, G. H., De Geus, E. J., Klaver, C. H., van Doornen, L. J., andCarroll, D. (1996): ‘Ambulatory monitoring of the impedance cardiogram’,Psychophysiology,33 pp. 184–193Google Scholar
  30. Zhang, Y., Qu, M., Webster, J. G., Tompkins, W. J. (1985): ‘Impedance cardiography for ambulatory subjects’, in ‘Frontiers of engineering and computing in health care’ Proc. 7th Ann. Conf. IEEE/Eng. Med. Biol. Soc. (IEEE, New York, NY, USA),2, pp. 764–769Google Scholar
  31. Zoghbi, W. A., andQuinones, M. A. (1986): ‘Determination of cardiac output by Doppler echocardiography: a critical appraisal’,Herz,11, pp. 258–268Google Scholar

Copyright information

© IFMBE 2004

Authors and Affiliations

  • G. Cybulski
    • 1
  • E. Michalak
    • 2
  • E. Koźluk
    • 2
    • 3
  • A. Piątkowska
    • 2
  • W. Niewiadomski
    • 1
  1. 1.Department of Applied PhysiologyMedical Research CentreWarsawPoland
  2. 2.Department of Noninvasive CardiologyInstitute of CardiologyWarsawPoland
  3. 3.1st Chair and Department of CardiologyMedical University of WarsawPoland

Personalised recommendations