Skip to main content
Log in

Respiratory acoustic thoracic imaging (RATHI): Assessing deterministic interpolation techniques

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

As respiratory sounds contain mechanical and clinical pulmonary information, technical efforts have been devoted during the past decades to analysing, processing and visualising them. The aim of this work was to evaluate deterministic interpolating functions to generate surface respiratory acoustic thoracic images (RATHIs), based on multiple acoustic sensors. Lung sounds were acquired from healthy subjects through a 5×5 microphone array on the anterior and posterior thoracic surfaces. The performance of five interpolating functions, including the linear, cubic spline, Hermite, Lagrange and nearest neighbour method, were evaluated to produce images of lung sound intensity during both breathing phases, at low (∼0.5ls−1) and high (∼1.0ls−1) airflows. Performance indexes included the normalised residual variance nrv (i.e. inaccuracy), the prediction covariance cv (i.e. precision), the residual covariance rcv (i.e. bias) and the maximum squared residual error semax (i.e. tolerance). Among the tested interpolating functions and in all experimental conditions, the Hermite function (nrv=0.146±0.059, cv=0.925±0.030, rcv=−0.073±0.068, semax=0.005±0.004) globally provided the indexes closert to the optimum, whereas the nearest neighbour (nrv=0.339±0.023, cv=0.870±0.033, rcv=0.298±0.032, semax=0.007±0.005) and the Lagrange methods (nrv=0.287±0.148, cv=0.880±0.039, rcv=−0.524±0.135, semax=0.007±0.0001) presented the poorest statistical measurements. It is concluded that, although deterministic interpolation functions indicate different performances among tested techniques, the Hermite interpolation function presents a more confident deterministic interpolation for depicting surface-type RATHI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banaszak, E. F., Kori, R. C., andSnider, G. C. (1973): ‘Phonopneumography’,Am. Rev. Respir. Dis.,107, pp. 449–455

    Google Scholar 

  • Burden, R., andFaires, J. D. (1985): ‘Numerical analysis’, 3rd edn (PWS Publishers, Boston, MA, USA, 1985).

    Google Scholar 

  • Charleston, S., Azimi-Sadjadi, M. R., andGonzález-Camarena, R. (1997): ‘Interference cancellation in respiratory sounds via a multiresolution joint time-delay and signal-estimation scheme’,IEEE Trans. Biomed. Eng.,44, pp. 1006–1019

    Article  Google Scholar 

  • Chen, P. (1999): ‘Three dimensional filtering approach to brain potential mapping’,IEEE Trans. Biomed. Eng.,46, pp. 574–583

    Article  Google Scholar 

  • Dosani, R. andKraman, S. S. (1983): ‘Lung sound intensity variability in normal men: A contour phonopneumographic study’,Chest,4, pp. 628–631

    Google Scholar 

  • Earis, J. E., andCheetham, B. M. G. (2000): ‘Current methods used for computerized respiratory sound analysis’,Eur. Respir. Rev.,10, pp. 586–590

    Google Scholar 

  • Foley, D. J., Dam, A. V., Ferner, S. K., andHughes, J. F. (1992): ‘Computer graphics principles and practice’, (Addison-Wesley, Boston, MA, USA, 1992)

    Google Scholar 

  • Forgacs, P. (1978): ‘The functional basis of pulmonary sounds’,Chest,73, pp. 399–405

    Google Scholar 

  • Gavriely, N., andCugell, D. W. (1995): ‘Breath sounds methodology’, (CRC Press, Boca Raton, FL, USA, 1995)

    Google Scholar 

  • Gavriely, N. M., andCugell, D. W. (1996): ‘Airflow effects on amplitude and spectral content on normal breath sounds’,J. Appl. Physiol.,80, pp. 5–13

    Google Scholar 

  • Gerald, C. F., andWealthey, P. O. (1998): ‘Applied numerical analysis’ (Addison Wesley)

  • Grevera, G. J., andUdupa, J. K. (1998): ‘An objective comparison of 3-d image interpolation methods’,IEEE Trans. Med. Imag.,17, pp. 642–652

    Google Scholar 

  • Grevera, G. J., Udupa, J. K., andMiki, Y. (1999): ‘A task specific evaluation of three dimensional interpolation techniques’,IEEE Trans. Med. Imag.,18, pp. 137–143

    Google Scholar 

  • Kraman, S. S. (1980): ‘Determination of the site of production of respiratory sounds by subtraction phonopneumography’,Am. Rev. Respir. Dis.,122, pp. 303–309

    Google Scholar 

  • Kraman, S. S. (1983), ‘Lungs sounds: relative sounds of origin and comparative amplitudes in normal subjects’,Lung,161, pp. 57–65

    Google Scholar 

  • Kraman, S. S. (1985): ‘New tools in lung sound research’,Sem. Respir. Med.,6, pp. 220–228

    Google Scholar 

  • Kraman, S. S., Wodicka, G. R., Yunns, O., andPasterkamp, H. (1995): ‘Measurement of respiratory acoustic signals. Effect of microphone air cavity, shape, and venting’,Chest,108, pp. 1004–1008

    Google Scholar 

  • Kompis, M., andWodicka, G. R. (1995): ‘Coherence of inspiratory and expiratory breath sounds as a function of inter-microphone distance’, Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., Montreal, Canada, Vol. 17, pp. 971–972

    Google Scholar 

  • Kompis, M., Pasterkamp, H., Oh, Y., andWodicka, G. R. (1997): ‘Distribution of inspiratory and expiratory sound intensity on the surface of the human thorax’. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Vol. 19, pp. 2047–2050

    Google Scholar 

  • Leblanc, P., Macklem, P. T., andRoss, W. R. D. (1970): ‘Breath sounds and distribution of pulmonary ventilation’,Am. Rev. Respir. Dis.,102, pp. 10–16

    Google Scholar 

  • Lehmann, T. M., Gonner, C., andSpizer, K. (1999): ‘Survey: interpolation methods in medical image processing’,IEEE Trans. Med. Imag.,18, pp. 1049–1075

    Google Scholar 

  • Maeland, E. (1988): ‘On the comparison of interpolation methods’,IEEE Trans. Med. Imag.,7, pp. 213–217

    Google Scholar 

  • McKusick, V. A., Jenkins, J. T., andWebb, G. N. (1955): ‘The acoustical basis of the chest examination: studies by means of sounds spectrography’,Am. Rev. Tuberc.,72, pp. 12–34

    Google Scholar 

  • Murphy, R. L. H., Holford, S. K., andKnowler, H. C. (1977): ‘Visual lung sound characterization by time-expanded wave-form analysis’,New Engl. J. Med.,296, pp. 968–971

    Google Scholar 

  • O'Donnell, D. M., andKraman, S. S. (1982): ‘Vesicular lung sound amplitude mapping by automated flow-gated phonopneumography’,J. Appl. Physiol.,53, pp. 603–609

    Google Scholar 

  • Pasterkamp, H., Patel, S., andWodicka, G. R. (1997a): ‘Asymmetry of respiratory sounds and thoracic transmission’,Med. Biol. Eng. Comput.,35, pp. 103–106

    Google Scholar 

  • Pasterkamp, H., Kraman, S. S., andWodicka, G. R. (1997b): ‘Respiratory sounds, advances beyond the stethoscope’,Am. J. Crit. Care Med.,156, pp. 974–987

    Google Scholar 

  • Pasterkamp, H., Consunji-Araneta, R., Oh, Y., andHolbrow, J. (1997c): ‘Chest surface mapping of lung sounds during methacoline challenge’,Pediatr. Pulmonol.,23, pp. 21–30

    Article  Google Scholar 

  • Perrin, F., Bertrand, O., andPernier, J. (1987): ‘Scalp current density mapping: value and estimation from potential data’,IEEE Trans. Biomed. Eng.,34, pp. 283–288

    Google Scholar 

  • Ploy-Song-Sang, Y., Martin, R. R., Ross, W. R. D., Loudon, R. G., andMacklem, P. T. (1977): ‘Breath sounds and regional ventilation’,Am. Rev. Respir. Dis.,116, pp. 187–199

    Google Scholar 

  • Ploy-Song-Sang, Y. (1985): ‘Lung sounds as indices of ventilation’,Sem. Respir. Med.,6, pp. 192–200

    Google Scholar 

  • Proakis, J. G., andManolakis, D. G. (1996): ‘Digital signal processing: principles, algorithms, and applications’, (Prentice Hall, New Jersey, USA, 1996)

    Google Scholar 

  • Que, Ch., Kolmaga, Ch., Durand, L. G., Kelly, S., andMcKlem, P. T. (2002): ‘Phonospirometry for noninvasive measurement of ventilation: methodology and preliminary results’,J. Appl. Physiol.,93, pp. 1515–1526

    Google Scholar 

  • Rosqvist, T., Paajanen, E., Kallio, K., Rajala, H. M., Katila, T., Piirila, P., Malmberg, P., andSovijarvi A. (1995): ‘Toolkit for lung sound analysis’,Med. Biol. Eng. Comput.,33, pp. 190–195

    Google Scholar 

  • Rossi, M., Sovijärvi, A. R. A., Piirilä, P., Vannuccini, L., Dalmasso, F., andVanderschoot, J. (2000): ‘Environmental and subject conditions and breathing manoeuvres for respiratory sound recordings’,Eur. Respir. Rev. 10, pp. 611–615

    Google Scholar 

  • Soong, C. K., Lind, J. C., Shaw, G. R., andKoles, Z. J. (1993): ‘Systematic comparisons of interpolation techniques in topographic brain mapping’,Electroenceph. Clin. Neurophys.,87, pp. 185–195

    Google Scholar 

  • Soufflet, L., Toussaint M., Luthringer, R., Gresser, J., Minot, R., andMacher, J. P. (1991): ‘A statistical evaluation of the main interpolation methods applied to 3-dimensional EEG mapping’,Electroenceph. Clin. Neurophys.,79, pp. 393–402

    Google Scholar 

  • Witte, H., Eiselt, M., Patakova, I., Petranek, S., Griessbach, G., Krajca, V., andRother, M. (1991): ‘Use of discrete Hilbert transform for automatic spike mapping: a methodological investigation’,Med. Biol. Eng. Comput.,29, pp. 242–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Charleston-Villalobos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charleston-Villalobos, S., Cortés-Rubiano, S., González-Camerena, R. et al. Respiratory acoustic thoracic imaging (RATHI): Assessing deterministic interpolation techniques. Med. Biol. Eng. Comput. 42, 618–626 (2004). https://doi.org/10.1007/BF02347543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347543

Keywords

Navigation