Skip to main content
Log in

Quantification of left ventricular modification in weightlessness conditions from the spatio-temporal analysis of 2D echocardiographic images

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Two-dimensional echocardiography (2DE) performed during flights with a parabolic trajectory to simulate weightlessness provides a unique means to study left ventricular (LV) modifications to prevent post-flight orthostatic intolerance in astronauts. However, conventional analysis of 2DE is based on manual tracings and depends on experience. Accordingly, the aim was objectively to quantify, from 2DE images, the LV modifications related to different gravity levels, by applying a semi-automated level-set border detection technique. The algorithm validation was performed by the comparison of manual tracing results, obtained by two independent observers with 20 images, with the semi-automated measurements. To quantify LV modifications, three consecutive cardiac cycles were analysed for each gravity phase (1 Gz, 1.8 Gz, 0 Gz). The level-set procedure was applied frame-by-frame to detect the LV endocardial contours and obtain LV area against time curves, from which end-diastolic (EDA) and end-systolic (ESA) areas were computed and averaged to compensate for respiratory variations. Linear regression (y=0.91x+1.47, r=0.99, SEE:0.80 cm2) and Bland-Altman analysis (bias=−0.58 cm2, 95% limits of agreement=±2.14 cm2) showed excellent correlation between the semi-automatic and manually traced values. Inter-observer variability was 5.4%, and the inter-technique variability was 4.1%. Modifications in LV dimensions during the parabola were found: compared with 1 Gz values, EDA and ESA were significantly reduced at 1.8 Gz by 8.8±5.5% and 12.1±10.1%, respectively, whereas, during 0 Gz, EDA and ESA increased by 13.3±7.3% and 11.6±5.1%, respectively, owing to abrupt changes in venous return. The proposed method resulted in fast and reliable estimations of LV dimensions, whose changes caused by different gravity conditions were objectively quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adalsteinsson, D., andSethian, J. A. (1994): ‘A fast level-set method for propagating interfaces’,J. Comp. Phys.,112, pp. 334–363

    Google Scholar 

  • Angelini, E. D., Laine, A. F., Takuma, S., Holmes, J. W., andHomma, S. (2001): LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography’,IEEE Trans. Med. Imaging,20, pp. 457–469

    Article  Google Scholar 

  • Ashton, E. A., andParker, K. J. (1999): ‘Multiple resolution bayesian segmentation of ultrasound images’,Ultrason. Imag.,17, pp. 291–304

    Google Scholar 

  • Bailliart, O., Capderou, A., Cholley, B., Kays, C., Techoueyeres, P., Lachaud, J. L., andVaida, P. (1998): ‘Changes in lower limb volume in humans during parabolic flights’,J. Appl. Physiol.,85, pp. 2100–2105

    Google Scholar 

  • Belogay, E., Cabrelli, C., Molter, U., andShonkwiler, R. (1997): ‘Calculating the Hausdorff distance between curves’,Inform. Process. Lett.,64, pp. 17–22

    Article  MathSciNet  Google Scholar 

  • Bland, J. M., andAltman, D. G. (1986): ‘Statistical method for assessing agreement between two methods of clinical measurement’,The Lancet,1, pp. 307–310

    Google Scholar 

  • Boukerroui, D., Baskurt, A., Noble, J. A., andBasset, O. (2003): ‘Segmentation of ultrasound images—multiresolution 2D and 3d algorithm based on global and local statistics’,Pattern Recognit. Lett.,24, pp. 779–790

    Article  Google Scholar 

  • Caiani, E. G., Porta, A., Baselli, G., Turiel, M., Muzzupappa, S., Pagani, M., Malliani, A., andCerrutti, S. (2002). “Analysis of left ventricular volume based on time warping averaging’,Med. Biol. Eng. Comput.,40, pp. 225–233

    Google Scholar 

  • Coppini, G., Poli, R., andValli, G. (1995): ‘Recovery of 3-D shape of the left ventricle from echocardiographic images,’IEEE Trans. Med. Imaging,14 pp. 301–317

    Article  Google Scholar 

  • Corsi, C., Borsari, M., Sarti, A., Lamberti, C., Travaglini, A., Shiota, T., andThomas, J. D. (2001): ‘Left ventricular endocardial surface detection based on real time 3D echocardiographic data’,Eur. J. Ultrasound,13, pp. 41–51

    Article  Google Scholar 

  • Corsi, C., Saracino, G., Sarti, A., andLamberti, C. (2002): ‘Left ventricular volume estimation for real-time-dimensional echocardiography’,IEEE Trans. Med. Imaging,21, pp. 1202–1208

    Article  Google Scholar 

  • Feng, J., Lin, W., andChen, C. (1991): ‘Epicardial boundary detection using fuzzy reasoning’,IEEE Trans. Med. Imaging.,10, pp. 187–199

    Article  Google Scholar 

  • Guell, A., andBraak, L. (1989): ‘Cardiovascular deconditioning syndrome during space flight’,Ann. Cardiol. Angiol.,38, pp. 499–502

    Google Scholar 

  • Herlin, L., Bereziat, D., Giraudon, G., Nguyen, C., andGraffigne, C. (1994a): ‘Comparison of different Markov random fields model for segmenting echocardiographic images’. Research report, INRIA.

  • Herlin, L., Bereziat, D., Giraudon, G., Nguyen, C., andGraffigne, C. (1994b): ‘Segmentation of echocardiographic images with Markov fields’,Proc. Eur. Conf. Computer Vision, pp. 201–206

  • Huttenlocher, D. P., Klanderman, G. A., andRucklidge, W. J. (1993): ‘Comparing images using the Hausdorff distance’,IEEE Trans. Pattern Anal. Mach. Intell.,15, pp. 850–863

    Article  Google Scholar 

  • Johns, J. P., Vernalis, M. N., White, C. D., Karemaker, J. M., andLatham, R. D. (1992): ‘Echocardiographic evaluation of cardiac function during parabolic flight’,Physiologist,35, pp. S117-S118

    Google Scholar 

  • Johns, J. P., Vernalis, M. N., Karemaker, J. M., andLatham, R. D. (1994): ‘Doppler evaluation of cardiac filling and ejection properties in humans during parabolic flight’,J. Appl. Physiol.,76, pp. 2621–2626

    Google Scholar 

  • Kotropoulos, C., Magnisalis, X., Pitas, I., andStrintzis, M. G. (1994): ‘Nonlinear ultrasonic image processing based on signaladaptive filters and self-organizing neural networks’,IEEE Trans. Image Process,3, pp. 65–77

    Article  Google Scholar 

  • Lathers, C. M. Charles, J. B., Elton, K. F., Holt, T. A., Mukal, C. N., Bennet, B. S., andBungo, M. W. (1989): ‘Acute hemodynamic responses to weightlessness in humans’,J. Clin. Pharmacol.,29, pp. 615–627

    Google Scholar 

  • Malladi, R., Sethian, J. A., andVemuri, B. C. (1995): ‘Shape modeling with front propagation: a level-set approach’,IEEE Trans. Pattern Anal. Mach. Intell.,17, pp. 158–175

    Article  Google Scholar 

  • Martin, D. S., South, D. A., Garcia, K. M., andArbeille, P. (2003): ‘Ultrasound in space’,Ultrasound Med. Biol.,29, pp. 1–12

    Article  Google Scholar 

  • Morel, J. M., andSolimini, S. (1995): ‘Varational methods in image segmentation’, in Progress in nonlinear differential equation and their applications’, Vol. 14 (Birkauser, Boston, 1995)

    Google Scholar 

  • Mukai, C. N., Lathers, C. M., Charles, J. B., andBennet, B. S. (1994): ‘Cardiovascular responses to repetitive exposure to hyperand hypo-gravity states produced by parabolic flights’,J. Clin. Pharmacol.,34, pp. 472–479

    Google Scholar 

  • Mulet-Parada, M., andNoble, J. A. (2000): ‘2D+T acoustic boundary detection in echocardiography’,Med. Image Anal.,4, pp. 21–30

    Article  Google Scholar 

  • Nicogossian, A. E., Huntoon, C. L., andPool, S. L. (1994): ‘Space physiology and medicine’ (Lea and Febiger, Malvern, PA, 1994)

    Google Scholar 

  • Norsk, P., Foldager, N., Bonde-Petersen, F., Elmann-Larsen, B., andJohansen, T. S. (1987): ‘Central venous pressure in humans during short periods of weightlessness’,J. Appl. Physiol.,63, pp. 2433–2437

    Google Scholar 

  • Osher, S., andSethian, J. A. (1988): ‘Fronts propagating with curvature dependent speed: algorithm based on Hamilton Jacobi formulation’,J. Comp. Phys.,79, pp. 12–49

    MathSciNet  Google Scholar 

  • Papademetris, X., Sinusas, A. J., Dione, D. P., andDuncan, J. S. (2001): ‘Estimation of 3D left ventricular deformation from echocardiography’Med. Image Anal.,5, pp. 17–28

    Article  Google Scholar 

  • Perona, P., andMalik, J. (1990): ‘Scale-space and edge detection using anisotropic diffusion’,IEEE Trans. Pattern Anal. Mach. Intell.,12, pp. 629–639

    Article  Google Scholar 

  • Picano, E., Lattanzi, F., Orlandini, A., Marini, C., L'Abbate, A. (1991): ‘Stress echocardiography and the human factor: the importance of being expert’,J. Am. Coll. Cardiol.,17, pp. 666–669

    Google Scholar 

  • Popp, R. L., Agaston, A., Armstrong, W. F., Nanda, N. C., Pearlman, A., Rakowski Seward, J. B., Silverman, N. H., Smith, M., Stewart, W. J., Taylor, R., Thys, D., andDavis, C. (1998): ‘Recommendations for training in performance and interpretation of stress echocardiography’,J. Am. Soc. Echocardiogr.,11, pp. 95–96

    Google Scholar 

  • Sanchez-Ortiz, G. I., Wright, G. J. T., Clarke, N., Declerck, J., Banning, A., andNoble, J. A. (2002): ‘Automated 3D echocardiography analysis compared with manual delineation and MUGA’,IEEE Trans. Med. Imaging,21, pp. 1069–1076

    Article  Google Scholar 

  • Sarti, A., Malladi, R., andLamberti, C. (2002): ‘A geometric level-set model for ultrasound analysis’, in ‘Geometric methods in bio-medical image processing’ (Springer, 2002), pp. 43–61

  • Satarehdan, S. K., andSoraghan, J. J. (1999): ‘Automatic cardiac LV boundary detection and tracking using hybrid fuzzy temporal and fuzzy multiscale edge detection’,IEEE Trans. Biomed. Eng.,46, pp. 1364–1378

    Google Scholar 

  • Sethian, J. A. (1999): ‘Level set methods and fast marching methods’ (Cambridge University Press, 1999)

  • Videbaek, R., andNorsk, P. (1997): ‘Atrial distension in humans during weightlessness induced by parabolic flights’,J. Appl. Physiol.,83, pp. 1862–1866

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Corsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corsi, C., Lamberti, C., Cerutti, S. et al. Quantification of left ventricular modification in weightlessness conditions from the spatio-temporal analysis of 2D echocardiographic images. Med. Biol. Eng. Comput. 42, 610–617 (2004). https://doi.org/10.1007/BF02347542

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347542

Keywords

Navigation