Skip to main content

Advertisement

Log in

Kinetics of gastric epithelial cells in duodenal ulcer: Local environmental factors controlling the proliferation and differentiation of gastric epithelial cells

  • View Point
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

The Pathophysiology of peptic ulcer disease is based on heterogenous abnormalities of gastric epithelial cell function. Based on clinical observations, we proposed the hypothesis that duodenal ulcer can occur with normal acid secretion, but that recurrence of duodenal ulcer may be caused by genetic and environmental factors that promote altered kinetics in gastric cells; i.e., the formation of new cells, the migration of cells, and changes in their life span of cells. The factors controlling these processes include feeding, the action of endocrine and gut hormones, the action of the autonomic nervous system, the microcirculation, and growth factors. In this review, to prove our hypothesis, we have summarized the clinical and experimental approaches to reveal the environmental factors that control the proliferation and differentiation of gastric epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hattori T. On cell proliferation and differentiation of the fundic mucosa of the golden hamster: Fractographic study combined with microscopy and3H-thymidine autoradiography. Cell Tiss Res 1974;148:213–226.

    Article  CAS  Google Scholar 

  2. Yeomans ND, Trier JS. Epithelial cell proliferation and migration in the developing rat gastric mucosa. Develop Biol 1976;53:206–216.

    Article  CAS  PubMed  Google Scholar 

  3. Kataoka K, Sakano Y, Miura J. Histogenesis of the mouse gastric mucosa, with special reference to type and distribution of proliferative cells. Arch Histol Jpn 1984;47:459–474.

    CAS  PubMed  Google Scholar 

  4. Hattori T, Fujita S. Tritiated thymidine autoradiographic study of cellular migration in the gastric glands of the golden hamster. Cell Tiss Res 1976;172:171–184.

    Article  CAS  Google Scholar 

  5. Card WI, Marks IN. The relationship between acid output of the stomach following “maximal” histamine stimulation and the parietal cell mass. Clin Sci 1960;19:147–163.

    CAS  PubMed  Google Scholar 

  6. Kawai K, Yamaguchi K, Fujimoto S, et al. The features of peptic ulcers in Japan. In: Grosman MI (ed) Proceedings of international cimetidine symposium. Shanghai: Shanghai Scientific and Technological Literature Publishing House, 1980;114–123.

    Google Scholar 

  7. Bonnevie O. The incidence of duodenal ulcer in Copenhagen County. Scand J Gastroenterol 1975;10:231–239, 385–393.

    CAS  PubMed  Google Scholar 

  8. James AH, Pickering GW. The role of gastric acidity in the pathogenesis of peptic ulcer. Clin Sci 1948;8:181–210.

    Google Scholar 

  9. Tamura S, Fujita H. Fine structural aspects on the renewal and development of surface mucous cells and glandular cells of the adult hamster. Arch Histol Jpn 1983;46:501–521.

    CAS  PubMed  Google Scholar 

  10. Kataoka K, Takeoka Y, Maesako J. Electron microscopic observations on immature chief and parietal cells in the mouse gastric mucosa. Arch Histol Jpn 1986;49:321–331.

    CAS  PubMed  Google Scholar 

  11. Karam SM, Leblond CP. Identification and counting epithelial cell types in the “corpus” of the mouse stomach. Anat Rec 1992;232:231–246.

    Article  CAS  PubMed  Google Scholar 

  12. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach: 1. Identification of proliferative cell types and pinpointing of the stem cell. Anat Rec 1993;236:259–279.

    CAS  PubMed  Google Scholar 

  13. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach: 2. Outward migration of pit cells. Anat Rec 1993;236:280–296.

    CAS  PubMed  Google Scholar 

  14. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach: 3. Inward migration of neck cells followed by progressive transformation into zymogenic cells. Anat Rec 1993;236:297–313.

    CAS  PubMed  Google Scholar 

  15. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach: 4. Bidirectional migration of parietal cells ending in their gradual degeneration and loss. Anat Rec 1993;236:314–332.

    CAS  PubMed  Google Scholar 

  16. Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach: 5. Behavior of enter-endocrine and caveolated cells: General conclusion on cell kinetics in the oxyntic epithelium. Anat Rec 1993;236:333–340.

    CAS  PubMed  Google Scholar 

  17. Kataoka K, Sakano Y. Panoramic observation of the mouse gastric mucosa by superwide-field electron microscopy. Arch Histol Jpn 1984;47:209–221.

    CAS  PubMed  Google Scholar 

  18. Kataoka K, Takaoka Y, Hirano S. Electron microscopic observations of surface mucous cells in the mouse gastric mucosa during physiological degeneration and extrusion. Arch Histol Jpn 1985;48:327–339.

    CAS  PubMed  Google Scholar 

  19. Kimoto K, Miyaoka T, Nakajima Z, et al. Studies on proliferation and differentiation of fundic mucosa in rats—trophic effect of AOC-tetragastrin oil suspension and insulin Novo lente (in Japanese with English abstract), Nippon Shokakibyo Gakkai Zasshi (Jpn J Gastroenterol) 1975;72:1369–1377.

    CAS  Google Scholar 

  20. Ragins H, Wincze F, Liu SM, Dittbrenner M. The origin and survival of gastric parietal cells in the mouse. Anat Rec 1968;162:99–110.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson LR. The trophic action of gastrointestinal hormone. Gastroenterology 1976;70:278–288.

    CAS  PubMed  Google Scholar 

  22. Crean GP, Marshall MW, Rumsey RDE. Parietal cell hyperplasia induced by the adminis-tration of pentagastrin (ICI 50, 123) to rats. Gastroenterology 1969;57:147–155.

    CAS  PubMed  Google Scholar 

  23. Kawai K, Inokuchi H. Cell differention of gastrointestinal mucosa; connection with gastric mucosal defensive mechanism (in Japanese) Igaku to Yakugaku (J Med Pharmaceut Sci) 1985;14:1009–1022.

    Google Scholar 

  24. Fujimoto S, Hattori T, Kimoto K, et al. Tritiated thymidine autoradiographic study on origin and renewal of gastric cells in antral area of hamsters. Gastroenterology 1980;79:785–791.

    CAS  PubMed  Google Scholar 

  25. Yoo OJ, Powell CT, Agarwal KL. Molecular cloning and nucleotide sequence of full-length cDNA coding for porcine gastrin, Proc Natl Acad Sci USA 1982;79:1049–1053.

    CAS  PubMed  Google Scholar 

  26. Fujimoto S, Kimoto K, Inokuchi H, et al. G-cell population and serum gastrin response to cimetidine-OXO test meal in relation to histopathological alterations in resected stomach from pa-tients with peptic ulcer disease. Gastroenterol Jpn 1980; 15:101–107.

    CAS  PubMed  Google Scholar 

  27. Lam SK. Heterogenous ongin of hyperacidity in duodenal ulcer. Progr Clin Biol Res 1985;173:255–271.

    CAS  Google Scholar 

  28. Lamers CBHW. Hormonal regulation of gastric acid in peptic ulcer. Scand J Gastroenterol 1988;23[Suppl 146]:5–10.

    Google Scholar 

  29. Saffouri B, Weir CG, Bitar KN, et al. Gastrin and somatostatin secretion by perfused rat stomach: Functional linkage of antral peptides. Am J Physiol 1980;238:495–501.

    Google Scholar 

  30. Schubert ML, Makhlouf G. Regulation of gastrin and somatostatin by intramural neurons; effect of nicotinic receptor stimulation with dimethyl-phenylpiperazinium. Gastroenterology 1982; 82:626–635.

    Google Scholar 

  31. Colturi TJ, Unger R, Feldman M. Role of circulatory somatostatin in regulation of gastric secretion, gastrin release, and islet cell function: Studies in healthy subjects and duodenal ulcer patients. J Clin Invest 1984;74:417–423.

    CAS  PubMed  Google Scholar 

  32. Matusno Y, Seki A. The cordination of gastrointestinal hormones and the autonomic nerves. Am J Gastroenterol 1978;69:21–50.

    Google Scholar 

  33. Watanabe N, Oda M, Nakamura M, et al. Electron microscopic studies on a relation between the autonomic nerves and true capillaries in the gastric mucosa with special reference to the endothelial microfilaments. Biol Anat 1981;20:120–125.

    Google Scholar 

  34. Yoshinaka M. A study of the differentiation of generative cells in the gastric mucosa and modification by environmental change, with reference to vagal denervation (in Japanese with English abstract). Nippon Shokakibyo Gakkai Zasshi (Jpn J Gastroenterol) 1985;82:1693–1702.

    CAS  Google Scholar 

  35. Nakajima C, Azuma T, Magami Y, et al. The effect of chemical sympathectomy on the generative cells and gastrin cells of gastric mucosa in golden hamsters (in Japanese with English abstract). Kyotofuritsu Ikadaigaku Zasshi (J Kyoto Pref Univ Med) 1988;97:699–705.

    Google Scholar 

  36. Larson GM, Ahlman BHJ, Bombeck CT, et al. The effect of chemical and surgical sympathectomy on gastric secretion and innervation. Scand J Gastroenterol 1984;19[Suppl]:27–32.

    CAS  Google Scholar 

  37. Seki T. Study on DNA synthetic capacity of gastric and duodenal mucosa; effect of vagotomy and pyloranterectomy (in Japanese with English abstract). Tokyo Ikadaigaku Zasshi (J Tokyo Med College) 1988;46:508–516.

    Google Scholar 

  38. Håkanson R, Vallgren S, Ekelund M, et al. The vagus exerts trophic control of the stomach in the rat. Gastroenterology 1984;86:28–32.

    PubMed  Google Scholar 

  39. Tsuchihashi Y, Tani T, Maruyama K, et al. Structural alterations of mucosal microvascular system in human chronic gastritis. In: Manabe H, Zweifach B, Messmer K (eds) Microcirculation in circulatory disorders. Heidelberg New York Tokyo: Springer, 1988;161–169.

    Google Scholar 

  40. Terano A, Ivey KJ, Stachura J, et al. Cell culture of rat gastric fundic mucosa. Gastroenterology 1982;83:1280–1291.

    CAS  PubMed  Google Scholar 

  41. Johnson LR, Gathrie PD. Stimulation of rat oxyntic gland mucosal growth by epidermal growth factor. Am J Physiol 1980;238:G45-G49.

    CAS  PubMed  Google Scholar 

  42. Scheving LA, Yen YC, Tsai TH, et al. Circadian phasedependent stimulatory effects of epidermal growth factor on deoxyribonucleic acid synthesis in the tongue, esophagus, and stomach of the adult male mouse. Endocrinology 1979; 105:1475–1480.

    CAS  PubMed  Google Scholar 

  43. Wright NA, Pike C, Elia G. Induction of a novel epidermal growth factor-secreting cell lineage by mucosal ulceration in human gastrointestinal stem cells. Nature 1990;343:82–85.

    CAS  PubMed  Google Scholar 

  44. Ushiro H, Cohen S. Identification of phosphotyrosine as a product of epidermal growth factor-associated protein kinase in A-431 cell membrane. J Biol Chem 1980;255:8363–8365.

    CAS  PubMed  Google Scholar 

  45. Carpenter C, Cohen S. Epidermal growth factor. J Biol Chem 1990;265:7709–7712.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, K., Rokutan, K. Kinetics of gastric epithelial cells in duodenal ulcer: Local environmental factors controlling the proliferation and differentiation of gastric epithelial cells. J Gastroenterol 30, 428–436 (1995). https://doi.org/10.1007/BF02347523

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347523

Key words

Navigation