Journal of Radioanalytical and Nuclear Chemistry

, Volume 241, Issue 3, pp 519–527 | Cite as

Investigation of HEU-type zeolite crystals after interaction with Sr2+ cations in aqueous solution using nuclear and surface analytical techniques

  • J. Orechovska
  • P. Misaelides
  • A. Godelitsas
  • P. Rajec
  • H. Klewe-Nebenius
  • F. Noli
  • E. Pavlidou


Pure HEU-type zeolite (heulandite) crystals were allowed to interact with Sr2+ cations in aqueous solution. The powdered solid experimental products obtained from batch-type sorption experiments, using solutions of Sr2+-concentrations between 10 and 1000 mg/l, were investigated using INAA, RI-XRF and SEM-EDS. The Sr uptake by the mineral which can adequately be described with a Freundlich-type isotherm, varies from 3.14 to 6.22 mg/g. The distribution coefficients increase progressively by decreasing the solutions concentration reaching a value of 1800 ml/g. The investigated zeolite interacts with Sr2+ cations through ion exchange reactions and initial exchangeable Ca2+ cations are replaced into the structural micropores. However, in the best case, only ca. 43% of the theoretical CEC can be covered because of the limited availability of the extra framework Ca2+ cations that can be removed from the lattice under ambient treatment conditions. The XPS investigation of Sr-loaded single crystals indicated that adsorption of Sr2+ cations on the outer surface also occurs while surface precipitation phenomena must be excluded. Similar surface analyses by means of12C-RBS showed that the Sr depth-distribution at near-surface layers is quite homogenous in contrast to a previous relevant study revealing an intense surface Sr-accumulation on a natural Ca-zeolite of different structural characteristics (scolecite).


Zeolite INAA Sorption Experiment Experimental Product Structural Micropore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. M. Meier, D. H. Olson, C. Baerlocher, Atlas of Zeolite Structure Types, Elsevier, London, 1996.Google Scholar
  2. 2.
    A. Dyer, Zeolite Molecular Sieves, Wiley, Chichester, 1988.Google Scholar
  3. 3.
    L. L. Ames Jr., Am. Mineralogist, 47 (1962) 1317.Google Scholar
  4. 4.
    L. L. Ames Jr., Am. Mineralogist, 48 (1963) 868.Google Scholar
  5. 5.
    L. L. Ames Jr., Am. Mineralogist, 49 (1964) 1099.Google Scholar
  6. 6.
    L. L. Ames Jr., Am. Mineralogist, 50 (1965) 465.Google Scholar
  7. 7.
    V. A. Nikashina, E. Y. Zaborskaya, E. M. Makhalov, R. N. Rubinshtein, Radiokhimiya, 16 (1974) 753.Google Scholar
  8. 8.
    G. D. Gradev, M. V. Milanov, Y. D. Prodanov, G. I. Stephanov, J. Radioanal. Nucl. Chem., 45 (1978) 103.Google Scholar
  9. 9.
    G. D. Gradev, L. V. Golubsov, N. V. Milanov, Sorption of strontium on calcium clinoptilolite, in: Natural Zeolites, Proc. of the Soviet — Bulgarian Symp. on Studies of Physicochemical Properties of Natural Zeolites,P. G. MELIKISHVILI (Ed.), Tbilisi, 1979, p. 135.Google Scholar
  10. 10.
    A. Araya, A. Dyer, J. Inorg. Nucl. Chem., 43 (1981) 595.Google Scholar
  11. 11.
    V. A. Nikashina, V. A. Tyurina, M. M. Senjavin, G. I. Stefanov, G. D. Gradev, I. G. Stefanova, A. I. Avramova, J. Radioanal. Nucl. Chem., 105 (1986) 175.Google Scholar
  12. 12.
    V. A. Nikashina, M. M. Senyavin, L. I. Mironova, V. A. Tyurina, Modelling and calculating ion-exchange processes of metal sorption by natural clinoptilolite, in: New Developments in Zeolite Science and Technology,Y. Murakami, A. Iijima, J. W. Ward (Eds), Elsevier, Amsterdam/Kodansha, Tokyo, 1986, p. 182.Google Scholar
  13. 13.
    A. A. Isirikyan, M. M. Dubinin, Adsorption-energetical and thermoanalytical studies of clinoptilolite in H, Li, Na, K, Cs, Mg, Ca, Sr, Ba cation exchanged forms, in: Occurrence, Properties and Utilization of Natural Zeolites,D. Kallo, H. S. Sherry (Eds), Akadémiai Kiadó, Budapest, 1988, p. 553.Google Scholar
  14. 14.
    L. Thamzil, Use of natural zeolites for nuclear waste treatment, Ph.D. Thesis, University of Salford, UK, 1989.Google Scholar
  15. 15.
    M. M. Senyavin, V. A. Nikashina, V. A. Novikova, G. D. Gradev, I. G. Stefanova, A. G. Avramova, J. Radioanal. Nucl. Chem., 130 (1989) 293.Google Scholar
  16. 16.
    E. Djurova, I. Stefanova, G. D. Gradev, J. Radioanal. Nucl. Chem., 130 (1989) 425.Google Scholar
  17. 17.
    S. Aggarwal, Studies on simulated nuclear waste of mixed solvent type. Removal of long-lived fission products by ion-exchange and sorption, Ph.D. Thesis, University of Salford, UK, 1989.Google Scholar
  18. 18.
    D. Keltos, Sorption and fixation of biotoxic radionuclides on zeolites for decontamination of the spent fuel elements cooling medium, Ph.D. Thesis, Comenius University, SK, 1991.Google Scholar
  19. 19.
    L. Matel, D. Keltos, F. Macasek, J. Radioanal. Nucl. Chem., 154 (1991) 81.Google Scholar
  20. 20.
    F. Macasek, D. Keltos, L. Matel, Solvent Extr. Ion Exch., 9 (1991) 865.Google Scholar
  21. 21.
    M. M. Senyavin, V. A. Nikashina, E. V. Zaitseva, Technological process of fresh water treatment to remove excess strontium of underground sources, in: Memoirs of the 3rd Intern. Conf. on the Occurrence, Properties and Utilization of Natural Zeolites,G. R. Fuentes, J. A. Gonzales (Eds), Havana, 1991, p. 262.Google Scholar
  22. 22.
    G. S. Klisuranov, G. D. Gradev, I. Stefanova, A. Milusheva, Use of aluminosilicate minerals for the removal of radionuclides and heavy metals from aqueous wastes by sorption and in combination with precipitation processes, in: IAEA-TECDOC-675, Vienna, 1992, p. 15.Google Scholar
  23. 23.
    G. Xu, J. Gu, Z. Du, X. Fan, Use of inorganic sorbents as backfill material for underground repositories, in: IAEA-TECDOC-675, Vienna, 1992, p. 121.Google Scholar
  24. 24.
    R. T. Pabalan, F. P. Bertetti, Thermodynamics of ion-exchange between Na+/Sr2+ solutions and the zeolite mineral clinoptilolite, in: Mat. Res. Soc. Symp. Proc. Vol. 333, Washington, 1994, p. 731.Google Scholar
  25. 25.
    V. A. Nikashina, N. K. Galkina, I. V. Komarova, B. G. Anfilov, M. A. Argin, Evaluation of clinoptilolite-rich tuffs as ion-exchangers, in: Natural Zeolites ′93,D. W. Ming, F. A. Mumpton (Eds), New York, 1995, p. 289.Google Scholar
  26. 26.
    E. Valcke, B. Engels, A. Cremers, Zeolites, 18 (1977) 212.Google Scholar
  27. 27.
    D. L. Bish, D. T. Vaniman, R. S. Rundberg, K. Wolfsberg, W. R. Daniels, D. E. Broxton, Natural sorptive barriers in Yucca Mountain, Nevada, for long-term isolation of high level waste, in: Radioactive waste Management Vol. 3, IAEA, Vienna, 1984, p. 415.Google Scholar
  28. 28.
    K. W. Thomas, Summary of sorption measurements performed with Yucca Mountain, Nevada, tuff samples and water from well J-13, Los Alamos National Laboratory, LA-10960-MS, 1987.Google Scholar
  29. 29.
    M. S. Joshi, P. M. Rao, J. Colloid Interf. Sci., 95 (1983) 131.Google Scholar
  30. 30.
    N. B. Chernyavskaya, Radiokhimiya, 27 (1985) 618.Google Scholar
  31. 31.
    J. Stolz, T. Armbruster, Mg2+, Mn2+, Cd2+ and Sr2+ exchange in heulandite single crystals: X-ray structure refinements, in: Zeolite ′97-Program and Abstract,C. Collela (Ed.), Naples, 1997, p. 273.Google Scholar
  32. 32.
    P. Misaelides, A. Godelitsas, S. Kossionidis, G. Manos, Nucl. Instr. Meth., B113 (1996) 296.CrossRefGoogle Scholar
  33. 33.
    P. Misaelides, A. Godelitsas, F. Link, H. Baumann, Microporous Mat., 6 (1996) 37.Google Scholar
  34. 34.
    P. Misaelides, A. Godelitsas, Application of ion-beam and surface analytical techniques to the study of natural zeolites: A review, in: Zeolite ′97-Program and Abstracts,C. Collela (Ed.), Naples, 1997, p. 32.Google Scholar
  35. 35.
    P. Misaelides, A. Godelitsas, F. Noli, S. Kossionidis, Nucl. Instr. Meth., B139 (1998) 249.CrossRefGoogle Scholar
  36. 36.
    L. R. Doolittle, Nucl. Instr. Meth., B15 (1986) 227.CrossRefGoogle Scholar
  37. 37.
    W. Stumm, Chemistry of the Solid Water Interface, J. Wiley, New York, 1992.Google Scholar
  38. 38.
    C. F. Baes Jr.,R. E. Mesmer, The Hydrolysis of Cations, Krieger, Malabar, 1986.Google Scholar
  39. 39.
    D. J. Vaughan, R. A. D. Pattrick (Eds), Mineral Surfaces, Chapman & Hall, London, 1995.Google Scholar
  40. 40.
    C. D. Wagner, W. M. Riggs, L. E. Davis, M. F. Moulder, G. E. Muilenberg (Eds), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, 1979.Google Scholar
  41. 41.
    D. Briggs, M. P. Seah (Eds), Practical Surface Analysis, J. Wiley, New York, 1983.Google Scholar
  42. 42.
    R. H. Parkman, J. M. Charnock, F. R. Livens, D. J. Vaughan, Geochim. Cosmochim. Acta, 62 (1998) 1481.CrossRefGoogle Scholar
  43. 43.
    R. M. Barrer, Cation exchange equilibria in zeolites and feldspathoids, in: Natural Zeolites,L. B. Sand, F. A. Mumpton (Eds), Pergamon, Oxford, 1978, p. 385.Google Scholar
  44. 44.
    G. Gottardi, E. Galli, Natural Zeolites, Springer-Verlag, Berlin, 1985.Google Scholar
  45. 45.
    E. R. Nightingale, J. Phys. Chem., 63 (1959) 138.Google Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • J. Orechovska
    • 1
  • P. Misaelides
    • 2
  • A. Godelitsas
    • 2
  • P. Rajec
    • 1
  • H. Klewe-Nebenius
    • 3
  • F. Noli
    • 2
  • E. Pavlidou
    • 4
  1. 1.Department of Nuclear ChemistryComenius UniversityBratislavaSlovak Republic
  2. 2.Department of General & Inorganic ChemistryAristotle UniversityThessalonikiGreece
  3. 3.Institut für Instrumentelle Analytik, Forschungszentrum KarlsruheKarlsruheGermany
  4. 4.Department of Solid State PhysicsAristotle UniversityThessalonikiGreece

Personalised recommendations