Skip to main content
Log in

Factors affecting individual variation in resting site fidelity in the patellid limpet,Cellana toreuma (Reeve)

  • Published:
Ecological Research

Abstract

An investigation was made of individual variation in resting site fidelity in the limpet,Cellana toreuma, with special attention to the adaptiveness of its homing behaviour. Limpets resting in the higher part of the study site showed strong resting site fidelity while those in the middle part showed weaker fidelity and tended to shift their resting sites to higher parts. Limpets resting in the lower part where there were an abundant supply of food and high predation intensity, had the strongest resting site fidelity and always returned to fixed resting sites with mucous sheets. The resting site fidelity varied continuously among individuals. Four causes for shift of resting site were detected: fleeing from starfish,Coscinasterias acutispina, pushing contests for resting site, non-returning excursions following and without following other's trail. The frequency of shift of resting sites due to each of these causes varied among individuals. Estimation of energy budget during about half a month showed that the location of resting site and frequency of shift of the site considerably affected the growth of limpets through energy expenditure by respiration and stationary mucus secretion, and energy intake by foraging. These variations were proposed as being a result not of density dependent dispersal nor adaptation to a single factor such as desiccation, heavy wave impacts or predation, but being due to individual difference in a compromise between two conflicting factors, susceptibility to predation and accessibility to food resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold S. J. (1981). Behavioral variation in natural populations. II. The inheritance of a feeding response in crosses between geographic races of the garter snake,Thamnophis elegans.Evolution 35: 510–15.

    Google Scholar 

  • Bradford M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding.Anal. Biochem. 72: 248–54.

    Article  CAS  PubMed  Google Scholar 

  • Branch G. M. (1981). The biology of limpets: Physical factors, energy flow, and ecological interactions.Oceanogr. Mar. Biol. Ann. Rev. 19: 235–380.

    Google Scholar 

  • Breen P. A. (1971). Homing behavior and population regulation in the limpetAcmaea (Collisella) digitalis.Veliger 14: 177–83.

    Google Scholar 

  • Burrows M. T. &Hughes R. N. (1990). Variation in growth and consumption among individuals and populations of dogwhelks,Nucella lapillus: A link between foraging behaviour and fitness.J. Anim. Ecol. 59: 723–42.

    Google Scholar 

  • Burrows M. T. &Hughes R. N. (1991). Variation in foraging behaviour among individuals and population of dogwhelks,Nucella lapillus: Natural constraints on energy intake.J. Anim. Ecol. 60: 497–514.

    Google Scholar 

  • Buskirk J. Van, &Smith D. C. (1989) Individual variation in winter foraging of black-capped chickadees.Behav. Ecol. Sociobiol. 24: 257–63.

    Article  Google Scholar 

  • Calow P. (1974). Some observations on locomotory strategies and their metabolic effects in two species of freshwater gastropods,Ancylus fluviatilis Mull. andPlanorbis contortus Linn.Oecologia (Ber.)16: 149–61.

    Google Scholar 

  • Chelazzi G., Focardi S., Deneuborg J. L. &Innocenti R. (1983). Competition for the home and aggressive behaviour in the chitonAcanthopleura gemmata (Blainville) (Mollusca: Polyplacophora).Behav. Ecol. Sociobiol. 14: 15–20.

    Article  Google Scholar 

  • Connor V. M. (1986). The use of mucous trails by intertidal limpets to enhance food resources.Biol. Bull. 171: 548–64.

    Google Scholar 

  • Cook S. B. (1976). The role of the ‘home scar’ in pulmonate limpets.Bull. Am. Malacol. Union, Inc. 1976: 34–7.

    Google Scholar 

  • DeAngelis D. L. (1992) The role of size variations within fish cohorts in competition, responses to predation, and apparent mutualisms. In:Mutualism and Community Organization: Behavioral, Theoretical and Food Web Approaches (eds H. Kawanabe, J. E. Cohen & K. Iwasaki) in press. Oxford University Press, Oxford.

    Google Scholar 

  • DeAngelis D. L., Godbout L. &Shuter B. J. (1991). An individual-based approach to predicting density-dependent dynamics in smallmouth bass populations.Ecol. Model. 57: 91–115.

    Article  Google Scholar 

  • Edwards S. F. &Welsh B. L. (1982). Trophic dynamics of a mud snail (Illyanassa obsoleta (Say)) population on an intertidal mudflat.Estuarine Coastal Shelf Sci. 14: 663–86.

    CAS  Google Scholar 

  • Frank P. W. (1965). The biodemography of an intertidal snail population.Ecology 46: 831–44.

    Google Scholar 

  • Garrity S. D. &Levings S. C. (1983). Homing to scars as a defence against predators in the pulmonate limpetSiphonaria gigas (Gastropoda).Mar. Biol. 72: 319–24.

    Article  Google Scholar 

  • Hassell M. P. &May R. M. (1985). From individual behaviour to population dynamics. In:Behavioural Ecology: Ecological Consequences of Adaptive Behaviour (eds R. M. Sibly & R. H. Smith) pp. 3–32. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Hawkins S. J. &Hartnoll R. G. (1983). Grazing of intertidal algae by marine invertebrates.Oceanogr. Mar. Biol. Ann. Rev. 21: 195–282.

    Google Scholar 

  • Heinrich B. (1976). The foraging specializations of individual bumblebees.Ecol. Monogr. 46: 105–28.

    Google Scholar 

  • Hino T. (1992). Interindividual variation and organization of avian mixed-species flocks. In:Mutualism and Community Organization: Behavioral, Theoretical and Food Web Approaches (eds H. Kawanabe, J. E. Cohen & K. Iwasaki) in press. Oxford University Press, Oxford.

    Google Scholar 

  • Hirano Y. (1979). Studies on activity pattern of the patellidlimpetCellana toreuma (Reeve).J. Exp. Mar. Biol. Ecol. 40: 137–48.

    Article  Google Scholar 

  • Hirano Y. (1981). Comparative ecological studies on the habitats and habits of intertidal limpets.J. Sci. Hiroshima Univ., Ser. B. Div. 1.29: 1–49.

    Google Scholar 

  • Horn P. L. (1986). Energetics ofChiton pelliserpentis (Quoy & Gaimard, 1983) (Mollusca: Polyplacophora) and the importance of mucus in its energy budget.J. Exp. Mar. Biol. Ecol. 101: 119–41.

    Article  Google Scholar 

  • Houston A., Clarke C., MacNamara J. &Mangel M. (1988). Dynamic models in behavioural and evolutionary ecology.Nature 332: 29–34.

    Article  Google Scholar 

  • Hughes R. N. (1980). Optimal foraging theory in the marine context.Oceanogr. Mar. Biol. Ann. Rev. 18: 423–81.

    Google Scholar 

  • Hulings N. C. (1985) Activity patterns and homing in two intertidal limpets. Jordan Gulf of Aqaba.Nautilus 99: 75–80.

    Google Scholar 

  • Iwasaki K. (1989). Beyond the food web analysis on aquatic community organization.Bull. Soc. Popul. Ecol. 45: 87–96 (in Japanese).

    Google Scholar 

  • Iwasaki K. (1991). Individual variability in behaviour of limpets and the organization of a rocky intertidal community. Doctoral dissertation, Kyoto University.

  • Iwasaki K. (1922a). Individual variation, social structure, community organization and hierarchical views in the marine context. In:Mutualism and Community Organization: Behavioral, Theoretical and Food Web Approaches (eds H. Kawanabe, J. E. Cohen & K. Iwasaki), in press. Oxford University Press, Oxford.

    Google Scholar 

  • Iwasaki K. (1922b). Synergistic effects of mixed grazing by intertidal limpets on sessile organisms: Consequences of differences in grazing ability and feeding habits.Physiol. Ecol. Japan 29, in press.

  • Jesse W. F. (1968). Studies of homing behavior in the limpetAcmaea scabra.Veliger 11: 52–5.

    Google Scholar 

  • Katano O. (1987a). Social structure of the darkchub,Zacco temmincki, in a small pond in relation to individual diferences.Physiol. Ecol. Japan 24: 1–132.

    Google Scholar 

  • Katano O. (1987b). Individual mosaic theory on the ecology of omnivorous, cyprinid fishes.Tansuigyo (Freshwater Fishes) 1987: 55–62 (in Japanese).

    Google Scholar 

  • Katano O. (1989). Individual mosaic theory in ecology.Bull. Soc. Popul. Ecol. 45: 77–86 (in Japanese).

    Google Scholar 

  • Katano O. (1990). Dynamic relationships between the dominance of male dark chub,Zacco temmincki, and their acquisition of females.Anim. Behav. 40: 1018–34.

    Google Scholar 

  • Kawanabe H. &Iwasaki K. (1992). Introduction: Flexibility and synergism of biological relations in natural communities. In:Mutualism and Community Organization: Bebevioral Theoretical and Food Web Approaches (eds H. Kawanabe, J. E. Cohen & K. Iwasaki), in press. Oxford University Press, Oxford.

    Google Scholar 

  • Kawata M. (1987). Units and passages: A view for evolutionary biology and ecology.Biol. Philos. 2: 415–34.

    Article  Google Scholar 

  • Kunz C. &Connor V. M. (1986). Functions of the home scar of the limpetCollisella scabra (Gould) (Gastropoda: Acmaeidae).Veliger 29: 25–30.

    Google Scholar 

  • Lindberg D. R. (1976). The home depression of the limpet,Collisella scabra (Gould, 1846).Bull. Am. Malac. Union, Inc. 1975: 69–70.

    Google Scholar 

  • Lindberg D. R. &Dwyer K. R. (1983). The topography, formation and role of the home depression ofCollisella scabra (Gould).Veliger 25: 229–34.

    Google Scholar 

  • Lomnicki A. (1980). Regulation of population density due to individual differences and patchy environment.Oikos 35: 185–93.

    Google Scholar 

  • Lomnicki A. (1988).Population Ecology of Individuals. Princeton University Press, Princeton.

    Google Scholar 

  • Mackay D. A. &Underwood, A. J. (1977). Experimental studies on homing in the intertidal patellid limpetCellana tramoserica (Soweby).Oecologia (Ber.)30: 215–37.

    Article  Google Scholar 

  • Nishihama S. &Nojima S. (1990). Laboratory experiment on the activity rhythm and the homing of the chiton,Acanthopleura japonica.Publ. Amakusa Mar. Biol. Lab. 10: 135–44.

    Google Scholar 

  • Ohgushi R. (1956). Observations on the behavior of non-homing limpets.Jap. J. Malac. (Venus) 19: 60–4 (in Japanese).

    Google Scholar 

  • Orton J. H. (1929). Observations onPatella vulgata. Part III. Habitat and habits.J. Mar. Biol. Assoc. UK 16: 277–88.

    Google Scholar 

  • Paine R. T. &Vadas R. L. (1969). Calorific values of benthic marine algae and their postulated relation to invertebrate food preference.Mar. Biol. 4: 79–86.

    Article  Google Scholar 

  • Parker G. A. (1984). Evolutionary stable strategies. In:Behavioural Ecology: An Evolutionary Approach, (3rd edn) (eds J. R. Krebs & N. B. Davies) pp. 30–61. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Partridge L. &Green P. (1985). Intraspecific feeding specializations and population dynamics. In:Behavioural Ecology: Ecological Consequences of Adaptive Behaviour (eds R. M. Sibly & R. H. Smith) pp. 207–26. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Price T. (1987). Diet variation in a population of Darwin's finches.Ecology 68: 1015–28.

    Google Scholar 

  • Russell E. S. (1907). Environmental studies on the limpets.Proc. Zool. Soc. Lond. 1907: 856–70.

    Google Scholar 

  • Saijo Y. (1975). Methods for measurements of Chlorophyll.Jap. J. Limnol. 36: 103–9 (in Japanese).

    Google Scholar 

  • Southwood T. R. E. (1978).Ecological Methods. Chapman and Hall, London.

    Google Scholar 

  • Stephens D. W. &Krebs J. R. (1986).Foraging Theory. Princeton University Press, Princeton.

    Google Scholar 

  • Test A. R. G. (1945). Ecology of CaliforniaAcmaea. Ecology 26: 395–405.

    Google Scholar 

  • Underwood A. J. (1979). The ecology of intertidal gastropods.Adv. Mar. Biol. 16: 111–210.

    Google Scholar 

  • Verderber G. W., Cook S. B. &Cook C. B. (1982). The role of the home scar in reducing water loss during aerial exposure of the pulmonate limpet,Siphonaria alternata (Say).Veliger 25: 235–43.

    Google Scholar 

  • Werner T. K. &Sherry T. W. (1987). Behavioral feeding specialization inPinaroloxias inornata, the Darwin's finch of Cocos Island, Costa Rica,Proc. Natl Acad. Sci. USA 84: 5506–10.

    Google Scholar 

  • West L. (1986). Interindividual variation in prey selection by the snailNucella (=Thais) emarginata.Ecology 67: 798–809.

    Google Scholar 

  • West L. (1988a). Prey selection by the tropical snailThais melones: A study of interindividual variation.Ecology 69: 1839–54.

    Google Scholar 

  • West L. (1988b). Interindividual variation in foraging behavior within a temperate and a tropical species of carnivorous gastropods. In:Behavioural Adaptation to Intertidal Life (eds G. Chelazzi & M. Vaninni) pp. 197–212. Plenum Press, New York.

    Google Scholar 

  • Whitfield D. P. (1990). Individual feeding specializations of wintering turnstoneArenaria interpress.J. Anim. Ecol. 59: 193–211.

    Google Scholar 

  • Wolcott T. G. (1973). Physiological ecology and intertidal zonation in limpets (Acmaea): A critical look at ‘limiting factors’.Biol. Bull. 145: 389–422.

    Google Scholar 

  • Yanai H., Takagi H. & Ichikawa M. (1986).A Handbook for Multivariate Analyses. Gendaisugakusha, Kyoto (in Japanese).

  • Zerba K. E. &Collins J. P. (1992). Spatial heterogeneity and individual variation in diet of an aquatic top predator.Ecology 73: 268–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Iwasaki, K. Factors affecting individual variation in resting site fidelity in the patellid limpet,Cellana toreuma (Reeve). Ecol. Res. 7, 305–331 (1992). https://doi.org/10.1007/BF02347099

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347099

Key words

Navigation