Advertisement

Documenta Ophthalmologica

, Volume 29, Issue 1, pp 1–126 | Cite as

Les nucleosides polyphosphates du cristallin

Leur evolution au cours de la différentiation, du vieillissement et de la surcharge en galactose
  • Jean Klethi
Article

Resume

Certains caractères particuliers du métabolisme énergétique du cristallin ont été démonstrés: le rendement maximum de fructuse-1-6-diphosphate comme substrat, le rôle prédominant de la glycolyse et la mise en évidence de l'adénylate kinase qui est plus proche de celle du muscle que de celle du foie.

La distribution des nucléotides libres du cristallin, dont certains composés one été révélés pour la première fois, se place entre le type énergétique et le type métabolique. Le premier semble être en rapport avec l'accommodation et varie avec celle-ci d'une espèce à l'autre, le second permet de maintenir la transparence.

D'autres modifications se font avec l'âge du sujet et, dans la même lentille, au fur et à mesure que l'on considère des zones plus centrales. Elles consistent essentiellement en un abaissement de la biosynthèse des nucléosides libres et une réduction notable du potentiel énergétique au cours du viellissement. Il en résulte une diminution de la biosynthèse des acides nucléiques et des protéines qui entraîne une chute encore plus accusée de l'ATP. C'est par ce cercle vicieux que l'on peut expliquer le changement de l'état physicochimique, la perte de transparence et la cataracte sénile.

Dans la surcharge expérimentale en galactose, une réduction de la biosynthèse de l'ATP, une baisse du taux de l'uridine-diphosphoglucose et du glycogène a été relevée, alors que la teneur en galactose-1-phosphate et en uridine-diphosphogalactose augmente considérablement.

Dans la cataracte congénitale ou post-natale précoce de l'homme, les modifications de l'activité de la galactokinase et de l'uridyltransférase sont moins nettes que celles de la galactosurie ou de la galactosémie provoquées.

Abbreviations

Enzymes

AK

EC 2.7.4.3 Adénylate kinase

HK

EC 2.7.1.1 Hexokinase

PK

EC 2.7.1.40 Pyruvate kinase

CPK

EC 2.7.3.2 Créatine kinase

G-6-P DH

EC 1.1.1.49 Glucose-6-phosphate déjudrogénase

6-PG DH

EC 1.1.1.44 6-Phosphogluconate déhydrogénase

LDH

EC 1.1.1.27 Lacticodéshydrogénase

MDH

EC 1.1.l.37 Malate déhydrogénase

Nucleotides

AMP, ADP, ATP

Adénosine 5′ mono-, di- et triphosphate

AMP 3′

Adenosine 3′ monophosphate

dAMP

Désoxyadénosine 5′ monophosphate

ADPR

Adénosine diphosphoribose

ADPRP

Adénosine diphosphoribose phosphate

CMP, CDP, CTP

Cytidine 5′ mono-, di- et triphosphate

GMP, GDP, GTP

Guanosine 5′ mono-, di- et triphosphate

GDP-Mn

Guanosine diphosphate mannose

IMP

Inosine 5′ monophosphate

NAD ou DPN÷

Nicotinamide adénine Nucleotide

NADH ou DPNH

Nicotinamide adénine dinucl6otide réduit

NADP+ ou TPN+

Nicotinamide adŋine dinucl6otide phosphate

NADPH ou TPNHNicotinamide

adénine dinucl6otide phosphate réduit

UMP, UDP, UTP

Uridine 5′ mono-, di- et triphosphate

UDPG

Uridine diphosphate glucose

UDP-Ga

Uridine diphosphate galactose

UDPA

Uridine diphosphate N acetyl glucosamine -I- uridine diphosphate N acetyl galactosamine

Autres esters phosphoriques

CP

Créatine phosphate

HMP

Hexose monophosphate

G-6-P

Glucose-6-phosphate

6-PG

6-Phophogluconate

R-5-P

Ribose-5-phosphate

F-6-P

Fructose-6-phosphate

F-1, 6-P

Fructose-1, 6-diphosphate

G-1-P

Glucose-1-phosphate

T.P.

Triose phosphate

P.E.P.

Phosphoénol pyruvate

G.A.P.

Glycéraldéhyde phosphate

D.A.P.

Dihydroxy acétone phosphate

PO4

Phosphore inorganique

Divers

Tris

Tris (hydroxyméthyl)-amino méthane

EDTA

Ethylène diamine tétracétate

DNP

Dinitrophénol

NBT

Cholrure de2,2′-di-p-nitrophenyl-5,5′-diphenyl-3,3′-(3,3′-dimé-thoxy-4,4′-diphenylene)-ditetrazolium

MTT

Bromure de 3(4,5-diméthyl thiazolyl-2)-2,5 diphenyl tétrazo-lium

Abstract

Some particularities of energy metabolism of the lens have been demonstrated: the greatest substrate efficiency of fructose-1-6-diphosphate, the predominance of the glycolysis and the presence of adenylate kinase which resembles more the muscle enzyme than that found in the liver.

The type of distribution of the free lens nucleotides which were partially revealed for the first time, can be placed between the energetic and the metabolic type. The first seems to be in connection with the acommodation and varies with it from one species to another, the second maintains the transparency.

Other modifications are age dependent and take also gradually place in the deeper layers of the same lens. The biosyntheses of the free nucleotides are in these cases diminished and the energy potential is considerably reduced. The result is a diminution of the nucleic acid and protein biosynthesis. Finally, the concentration of ATP drops even more. This ‘circulus vitiosus’ explaines the change of the physico-chemical state, the loss of transparency and the senile cataract.

In experimental galactose feeding a reduction of the ATP biosynthesis, a drop of uridine-diphosphoglucose and of glycogen has been observed, whereas the concentrations of galactose-I-phosphate and uridine-diphosphogalactose are much increased.

In congenital and postnatal human cataracts the changes in the galactokinase and uridyltransferase are less evident than those noted in provoked galactosuria or galactosemia.

Zusammenfassung

Einige besondere Eigenschalften des Energieumsatzes der Linse werden beschrieben: die maximalle Substratwirkung des fruktose-1-6-diphosphates, die hervorragende Rolle der Glykolyse und das Vorhandensein in der Linse von Adenylatkinase, die mehr der in dem Muskel als der in der Leber ähnelt.

Die Verteilung in der Linse der freien Nukleotiden, von denen einzelne zum ersten Mal gefunden wurden, entspricht weder den energetischen, noch dem metabolischen Typus; sie steht zwischen den beiden. Der energetische Typus scheint mit der Akkomodation in Verbindung zur stehen und ist wie diese von einer Tierart zur anderen verschieden; der metabolische Typus erlaubt es, die Klarheit der Linse aufrecht zu halten.

Andere Veränderungen hängen vom Alter des Subjekts und, in derselben Linse, von Tiefe der untersuchten Schicht ab. Sie bestehen hauptsächlich in einer Herabsetzung der Biosynthese der freien Nukleotide und in einer beträchtlichen Verminderung des Energiepotentials während des Alterungsprozesses. Daraus ergibt sich ein Ausfall in der Biosynthese der Nukleinsäuren und Proteine der endlich eine noch stärkere Erniedrigung in den ATP Konzentraten hervorruft. Durch diesen circulus vitiosus kann die Veränderung des physilo-chemischen Zustandes, der Verlust der Durchsichtigkeit und der Altersstar erklärt werden.

Bei der experimentellen Belastung durch Galaktose wurde eine Herabsetzung der ATP-Synthese, der UDP-G und der Glykogen-Kozentration fertgestellt, während die des Gal-1-P unde der UDP-Gal sich bedeutend erhölt.

In der angeborenen und postnatalen Katarakt des Menschen sind die Aktivitätsveränderungen der Galaktokinase und der Uridyltransferase weniger deutlich als die Ergebnisse der provozierten Galaktosurie oder Galaktosämie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Abraham, S. &I. L. CHaikoff. Glycolytic pathways and lipogenesis in mammary glands of lactating and non-lactating normal rats.J. biol. Chem. 234:2246–2253 (1959).PubMedGoogle Scholar
  2. ——P. F. Hirsch &I. L. Chaikoff. The quantitative significance of glycolysis and nonglycolysis in glucose utilization by rat mammary gland.J. biol. Chem. 211:31–30 (1954).PubMedGoogle Scholar
  3. Adam, H. Nucleotidspezifität glykolytischer Kinasen enzymatische Bestimmung des Adenylsäuresystems.Biochem. Z. 335:25–36 (1961).PubMedGoogle Scholar
  4. Anderson, E. P., K. J. Isselbacher &H. M. Kalckar. Defect in uptake of galactose-lphosphate into liver nucleotides in congenital galactosemia.Science, 125:113–114 (1957).PubMedGoogle Scholar
  5. Andrews, P. Estimation of the molecolar weights of proteins by Sephadex gel filtration.Biochem. J. 91:222–233 (1964).PubMedGoogle Scholar
  6. Ashmore, J., J. H. Kinoshita, F. B. Nesbett &A. B. Hastings. Studies on carbohydrate metabolism in rat liver slices. VII. Evaluation of the Embden-Meyerhof and phosphogluconate oxidation pathways.J. biol. Chem. 220:619–626 (1956).PubMedGoogle Scholar
  7. Baker, L., W. J. Mellman, T. A. Tedesco &S. Segal. Galactosemia. Symptomatic and asymptomatic homozygotes in one negro sibship.J. Pediat. 68:551–558 (1966).Google Scholar
  8. Bergmeyer, H. U., E. Bernt & B. Hess in: Methoden der enzymatischen Analysen. Weinheim: Verlag Chemie 736–743 1(962).Google Scholar
  9. Beutler, E., M. C. Baluda, P. Sturgeon &R. Day. A new genetic abnormality resulting in galactose-1-phosphate uridyltransferase deficiency.Lancet s5 353–354 (1965).Google Scholar
  10. ——. Improved methods for measuring galactose-l-phosphate uridyl-transferase activity of erythrocytes.Clin. chim. Acta, 13:369–379 (1966).CrossRefPubMedGoogle Scholar
  11. —— &M. Mitchell. New rapid method for the estimation of red cell galactose-lphosphate uridyl transferase activity.J. Lab. clin. Med. 72:527–532 (1968).PubMedGoogle Scholar
  12. Bloom, B. &D. Stetten Jr. Pathways of glucose catabolism.J. amer. chem. Soc. 75:5446 (1953).CrossRefGoogle Scholar
  13. —— & —— The fraction of glucose catabolized via the glycolytic pathway.J. biol. Chem. 212:555–563 (1955).PubMedGoogle Scholar
  14. ——M. R. Stetten &D. Stetten Jr. Evaluation of catabolic pathways of glucose in mammalian systems.J. biol. Chem. 204:691–694 (1953).Google Scholar
  15. Bock, R. M., N. S. Ling, S. A. Morell &S. H. Lipton. Ultraviolet absorption spectra of adenosine-5′-triphosphate and related 5′ ribonucleotides.Arch. Biochem. Biophys. 62:253–264 (1956).CrossRefPubMedGoogle Scholar
  16. Bourdet, A. Les constituants puriques et pyrimidiques des levures et la degradation autolytique de l'acide ribomucléique. —Paris: These de Doctorat és Sciences (1956).Google Scholar
  17. Bowen, W. J. &T. D. Kerwin. The kinetics of myokinase. Studies of heat denaturation, the effect of salts and the state of equilibrium.Arch. Biochem. Biophys. 64: 278–284. (1956).CrossRefPubMedGoogle Scholar
  18. Bowman, E. J., H. Frischer, F. Ajmar, E. P. Carson &M. K. Gower. Population, family and biochemical investigation of adenylate kinase polymorphism.Nature. 214:1156–1158 (1967).PubMedGoogle Scholar
  19. Bray, P. T., R. J. Isaac &A. G. Watkins. Galactosaemia.Arch. Dis. Childh. 27:341–350 (1952).PubMedGoogle Scholar
  20. Bruck, E. &S. Rapoports. Galactosemia in an infant with cataracts. Clinical observations and carbohydrate studies.Amer. J. Dis. Child. 70:267–276 (1945).Google Scholar
  21. Cabib, E., L. F. Leloir &C. E. Cardini. Uridine diphosphate acetylglucosamine.J. biol. Chem. 203:1055–1070 (1953).PubMedGoogle Scholar
  22. Carta, F., M. Santori &G. Maraini. I nucleotidi libere nel cristallino animale adulte.Ann. Ottal. Clin. oculist. 92:23–26 (1966).Google Scholar
  23. Cheldelin, V. H. Metabolic Pathways in Microorganisms. New York. John Wiley & Sons, (1961).Google Scholar
  24. ——C. H. Wang &T. E. King in: Comparative Biochemistry. 3: 427–502 New York, Academic Pres, (1962).Google Scholar
  25. Chen, P. S., T. Y. Toribara &H. Warner. Microdetermination of phosphorus.Anal. Chem. 28:1756–1758, (1956).CrossRefGoogle Scholar
  26. Chiga, M. &W. E. Plaut. Nucleotide transphosphorylases from liver. 1. Purification and properties of an adenosine dpphosphate-adenosine monophosphate transphosphorylase from swine liver.J. biol. Chem. 235:3260–3265, (1960).PubMedGoogle Scholar
  27. Christiansen, G. S. &P. J. Leinfelder. A critical study of lens metabolism. Nonenzymatic respiration.Amer. J. Ophthal. 35, II:21–32 (1952).PubMedGoogle Scholar
  28. Cohen, M. &J. A. Killian. Studies in intraocular metabolism.Acta XIII. Cone. ophthal. Hollandia. 1:166–178 (1929).Google Scholar
  29. Colowick, S. P., N. O. Kaplan &M. M. Ciotti. The reaction of pyridine nucleotide with cyanide and its analytical use.J. biol. Chem. 191: 447–459 (1951).PubMedGoogle Scholar
  30. Cordes, F. C. Galactosemia catatact: a review. Report of a case.Amer. J. Ophthal. 50:1151–1158 (1960).Google Scholar
  31. Cristini, G. Cataratta congenita nelle sindromi galattosemiche fruste.Ross. ital. Ottal. 28:3–11 (1959).Google Scholar
  32. Cüppers, K. Communication personnelle (1962).Google Scholar
  33. Dardenne, U. &G. Kirsten. Das Gleichgewicht der oxydierten und reduzierten Codehydrase I in den einzelnen Teilen junger und alter Rinderlinsen.v. Graefes Arch. Ophthal. 163:403–408 (1961).Google Scholar
  34. Davis, B. Disc electrophoresis. Preprinted by distillation products. Rochester (N.Y.): Industries Division of Eastman Kodak Company (1962).Google Scholar
  35. Duda, H. &D. Pogell. Acid-soluble nucleotides of bovine lens and cornea.Arch. Biochem. Biophys. 73:100–106 (1958).CrossRefPubMedGoogle Scholar
  36. Durand, P. &F. Semach. Formes tardives, atténuées de galactosémie chez deux frères. Interpretation clinique et classement génétique de la maladie.Arch. franç. Péd. 12:958–971 (1955).Google Scholar
  37. Ely, L. O. The oxidation of lactic acid, pyruvic acid and various members of the citric acid cycle by bovine lens homogenates.Amer. J. Ophthal. 34, II: 127–130 (1951).PubMedGoogle Scholar
  38. Euler von, H., F. Schlenk &G. Gunter. Die Enzymsysteme des Oxydo-reduktiven Stoffwechsels in Augenlinsen.v. Graefes Arch. Ophthal. 140:116–128 (1939).Google Scholar
  39. Fanconi, G. Hochgradige Galaktose — Intoleranz (Galaktose-Diabetes) bei einem Kinde mit Neurofibromatosis Recklinghausen.Jrb. Kinderheilk. 138:1–8 (1933).Google Scholar
  40. Felts, J. M., R. G. Doell &I. L. Chaikoff. The effect of insulin on the pathways of conversion of glucose to fatty acids in the liver.J. biol. Chem. 219:473–478 (1956).PubMedGoogle Scholar
  41. Fereira, L. E. Cataratta galactosemica.Rev. brasil. Oftal. 20:313–321 (1961).Google Scholar
  42. Fildes, R. A. &H. Harris. Genetically determined variation of adenylate kinase in man.Nature, 209:261–263 (1966).PubMedGoogle Scholar
  43. Forssman, S. Studien über Umsatz und Wirkungen der Bernsteinsdurein vivo.Acta physiol. scand. 2, suppl. 5,1–121 (1941).Google Scholar
  44. Frohman, C. &E. V. Kinsey. Studies on the crystalline Lens. Distribution of various phosphate-centaining compounds and its significance with respect to energetics.Arch. Ophthal. 48:12–18 (1952).Google Scholar
  45. Glaser, L. &D. H. Brown. Purification and properties of D — glucose-6-phosphate dehydrogenase.J. biol. Chem. 216:67–79 (1955).PubMedGoogle Scholar
  46. Glock, G. E. &P. Mc Lean. Further studies on the properties and assay of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver.Biochem. J. 55:400–408 (1953).PubMedGoogle Scholar
  47. Gitzelmann, R. Deficiency of erythocyte galactokinase in a patient with galactose diabetes.Lancet, II:670–671 (1965).Google Scholar
  48. —— Hereditary galaktokinase deficiency, a newly recognized cause of juvenile cataracts.Pediat. Res. 1:14–23 (1967).Google Scholar
  49. ——J. R. Poley &A. Prader. Partial galactose-1-phosphate uridyltransferase deficiency due to a variant enzyme.Helvetic paediatr. Acta, 3:252–255 (1967).Google Scholar
  50. ——H. C. Curtius &I. Schneller. Galactitol and galactose-1-phosphate in the lens of a galactosemic infant.Exptl. Eye Res. 6:1–3 (1967).Google Scholar
  51. Gullstrand, A. Wie ich den intrakapsulären Akkommodationsmechanismus fand.Nobelvortag. Arch. Augenheilk. 72:169–190 (1912).Google Scholar
  52. Hanson, R. W., H. S. Schwartz &B. S. Barker. ‘Free’ and ‘fixed’ glycogen as physiological entities.Amer. J. Physiol. 198:800–806 (1960).PubMedGoogle Scholar
  53. Heppel, L. A. &R. J. Hilmoe. Purification and properties of 5-nucléotidase.J. biol. Chem. 188:665–676 (1951).PubMedGoogle Scholar
  54. Heyningen van, R. Formation of polyols by the lens of the rat with ‘sugar’ cataract.Nature, 184:194–195 (1959).Google Scholar
  55. —— The sorbitol pathway in the lens.Exptl. Eye Res. 1:396–404 (1962).Google Scholar
  56. —— The metabolism of glucose by the rabbit lens in presence and absence of oxygen.Biochem. J.:419–431 (1965).PubMedGoogle Scholar
  57. Hohorst, H. J. in: Methoden der enzymatischen Analyse,266–270, Weinheim: Verlag Chemie (1962).Google Scholar
  58. Holt von, C., H. Luth, I. Hallmann, L. von Holt &I. Voelker. Die Oxydation von 1-14C-Glucose und 6-14C-Glucose in Cornea, Linse und Retina.Biochem. Z. 331:239–244 (1959).Google Scholar
  59. Holzer, H., D. Dusch &H. Krör. Enzymatisch-optische Bestimmung von TPNH und TPN neben DPNH und DPN.Z. physiol. Chem. 313:184–193 (1953).Google Scholar
  60. Hsia, D. Y.-Y. Clinical variants of galactosemia.Metabolism, 16:419–137 (1967).PubMedGoogle Scholar
  61. Hugh-Jones, K., A. L. Newcomb &D. Y.-Y. Hsia. The genetic mechanism of galactosaemia.Arch. Dis. Childh. 35:521–528 (1960).PubMedGoogle Scholar
  62. Hurlbert, C. B., H. Schmitz, A. F. Drumm &V. R. Potter. Nucleotide metabolism. Chromatographic separation of acid-soluble nucleotides.J. biol. Chem. 209:23–39 (1954).PubMedGoogle Scholar
  63. Jermyn, M. A. &F. A. Isherwood. Improved separation of sugars on the paper partition chromatogram.Biochem. J. 44:402–407 (1949).Google Scholar
  64. Kaplan, N. O., S. P. Colowick &F. E. Neufeld. Pyridine nucleotide transhydrogenase. Animal tissue transhydrogenases.J. biol. Chem. 205:1–15 (1953).PubMedGoogle Scholar
  65. Katz, J., S. Abraham, R. Hill &I. L. Chaikoff. The occurence and mechanism of the hexose monophosphate shunt in rat liver slices.J. biol. Chem. 214:853–868 (1955).PubMedGoogle Scholar
  66. —— &H. Wood. The use of14CO2 yields from glucose-l- and 6-14C for the evaluation of the pathway of glucose metabolism.J. biol. Chem. 238:517–523 (1963).PubMedGoogle Scholar
  67. Kinoshita, J. H. Carbohydrate metabolism of lens.Arch. Ophthal. 54:360–368 (1955).Google Scholar
  68. —— Cataracts in galactosemia. The Jonas S. Friedenwald. Memorial Lecture.Invest. Ophthal. 4:786–799 (1965).PubMedGoogle Scholar
  69. —— &L. O. Merola. The distribution of glutathione and protein sulthydryl groups in calf and cattle lenses.Amer. J. Ophthal. 46, II:36–42 (1958).PubMedGoogle Scholar
  70. —— &E. Dikmak. Osmotic changes in experimental galactose cataract.Exptl. Eye Res. 1:405–410 (1962).Google Scholar
  71. ——S. Futterhan, K. Satoh &L. O. Merola. Factors affecting the formation of sugar alcohols in ocular lens.Biochim. biophys. Acta. 74: 340–350 (1963).CrossRefPubMedGoogle Scholar
  72. —— &L. O. Merola. Hydration of the lens during the development of galactose cataract.Invest. Ophthal. 3:577–584 (1964).PubMedGoogle Scholar
  73. —— &S. Hayman. Osmotic effects on the amino-acid concentrating mechanism in the rabbit lens.J. biol. Chem. 240:310–315 (1965).PubMedGoogle Scholar
  74. —— &B. Tung. Osmotic effects of dulcitol retention in galactose cataract. Biochemistry of the Eye. Symp. Tutzing Castle,373–382 (1966) —Basel/New York: Karger (1968).Google Scholar
  75. ——D. Dyornik, L. Kram &K. H. Kram The effect of an aldose reductase inhibitor on the galactose-exposed rabbit lens.Biochim. biophys. Acta, 158:472–475 (1968).PubMedGoogle Scholar
  76. Kirby, K. S. Some new solvent systems for the paper chromatography of nucleic acid degradation products.Biochim. biophys. Acta, 18:575–576 (1955).CrossRefPubMedGoogle Scholar
  77. Kirkmann, H. N. Glucose-6-phosphate dehydrogenase and human erythrocytes.Nature, 184:1291–1292 (1959).Google Scholar
  78. Klethi, J. &P. Mandel. Les nucleotides libres du cristallin de veau.Biochim. biophys. Acta, 24:642–643 (1957).CrossRefPubMedGoogle Scholar
  79. —— Di- et triphosphopyridine nucleotides (DPN et TPN) de cristallins de bovidés jeunes et ages.Biochim. biophys. Acta, 37:549–550 (1960).CrossRefPubMedGoogle Scholar
  80. —— Les uridines diphosphates hexoses du cristallin de rats soumis a un régime riche en galactose.Biochim. biophys. Acta, 57:379–381 (1962).CrossRefPubMedGoogle Scholar
  81. Korc, I. Biochemical studies on cataracts in galactose-fed rats.Arch. Biochem. 94:196–200 (1961).Google Scholar
  82. Krause, A. C. Chemical pathogenesis of cataract.Amer. J. Ophthal. 21:1343–1355 (1938).Google Scholar
  83. Kress, L. F., V. H. Bond Jr. &L. Noda. The sullhydryl groups of rabbit muscle adenosine triphosphate-adenosine monophosphate phosphotransferase.J. biol. Chem. 241:2293–2300 (1966).PubMedGoogle Scholar
  84. —— &L. Noda. Inactivation of rabbit muscle adenosine triphosphate-adenosine 5′ — phosphate phosphotransferase by alkylation of methionine residues.J. biol. Chem. 242:558–564 (1967).PubMedGoogle Scholar
  85. Kronfeld, P. &L. Bothman. Zur Frage der Linsenatmung.Z. Augenheilk. 65:41–62 (1928).Google Scholar
  86. Lamprecht, W. &I. Trautschold in: Methoden der enzymatischen Analyse. 543–551. Weinheim: Verlag Chemie (1962).Google Scholar
  87. —— &P. Stein in: Methoden der enzymatischen Analyse, 610–616. Weinheim: Verlag Chemie (1962).Google Scholar
  88. Layne, E. in: Methods in Enzymology, 3, 447–466 New York: Academic Press (1957).Google Scholar
  89. Le Page, G. A. Biological energy transformations during shock as shown by tissue analyses.Amer. J. Physiol., 146:267–281 (1946).Google Scholar
  90. Lerman, S. The lens in congenital galactosemia.Arch. Ophthal. 61:88–92 (1959).Google Scholar
  91. Liesenhoff, H. Untersuchungen über einige Stoffwechselvorgänge in der Linse. Bonn: Diss inaugur. (1958).Google Scholar
  92. Lineweaver, H. &D. Burk. The determination of enzyme dissociation constants.J. Amer. chem. Soc. 56:658–666 (1934).Google Scholar
  93. Lohmann, K. Über die Isolierung verschiedener natürlicer Phosphorsäaureverbindun-gen und die Frage ihrer Einheitlichkeit.Biochem. Z. 194:306–327 (1928).Google Scholar
  94. Lowry, O. H., N. J. Rosebrough, A. L. Farr &R. J. Randal. Protein measurement with the folin phenol reagent.J. biol. Chem. 193:265–275 (1951).PubMedGoogle Scholar
  95. Macheboeuf, M. &J. Delsal. Sur le dosage de très petites quantités de phosphore dans des matures organiques.Bull. Soc. Chim. biol. 25:116–120 (1943).Google Scholar
  96. Magasanik, B., E. Vischer, R. Doniger, D. Elson &E. Chargaff. The separation and estimation of ribonucleotides in minute quantities.J. biol. Chem. 186:37–50 (1905).Google Scholar
  97. Mandel, P. Biochimie du cristallin.Exp. ann. de bochim. méd. 187–220, (1956).Google Scholar
  98. —— Meuble réfrigéré pour manipulations à basse température.Bull. Soc. Chim. biol. 41:173–174 (1959).PubMedGoogle Scholar
  99. —— Free nucleotides in animal tissus in: Progress in nucleic acid research and molecular biology. 3,299–334. New York: Academic Press (1964).Google Scholar
  100. — &J. Zimmer. Communication personnelle (1952).Google Scholar
  101. —— &J. Klethi. La présence d'un système oxydatif direct du glucose-6-phosphate dans le cristallin.C.R. Acad. Sci. 241:710–712 (1955).Google Scholar
  102. —— & —— La répartition de l'adénosine tri- et diphosphate dans le cristallin de bovidés jeunes et âgés.C.R. Soc. Biol. 150:992–994 (1956).Google Scholar
  103. —— & ——,N. Virmaux &A. Lessinger. Les troubles du métabolisme énergétique comme phénomène initial dans le vieillissement.C.R. Acad. Sci. 248:476–479 (1959).Google Scholar
  104. —— &M. Thinnes. Incorporation de lysine-14C et de methionine-35S dans les protéines du cristallin d'animaux soumis a un régime riche en galactose.C.R. Acad. Sci. 254:1691–1963 (1962).Google Scholar
  105. ——N. Virmaux &J. Klethi. Biosynthèse des nucléotides uridyliques dans le cristallin.C.R. Soc. Biol. 156:2123–2126 (1962).Google Scholar
  106. Markland, F. S. &C. L. Wadkins Adénosine triphosphate-adenosine 5′-monophosphate phosphotransferase of bovine liver mitochondria. Isolation and chemical properties.J. biol. Chem. 241:4124–4135 (1966a).PubMedGoogle Scholar
  107. —— & —— Adénosine triphosphate-adenosine 5′-monophosphate phosphotransferase of bovine liver mitochondria. Gener 1 kinetic and structural properties.J. biol. Chem. 241:4136–4145 (1966b).PubMedGoogle Scholar
  108. Mc Lean, P. Carbohydrate metabolism of ammary tissue. Patways of glucose catabolism in the mammary gland.Biochim. bioph. Acta, 30:303–315 (1958).Google Scholar
  109. Mejbaum, W. Über die Bestimmung kleiner Pentosemengen insbesondere in Derivation der Adenylsäure.Z. physiol. Chem. 258:117–120 (1939).Google Scholar
  110. Mellman, W. J., T. A. Tedesco &L. Baker. A new genetic abnormality.Lancet, 1: 1395–1396 (1965).Google Scholar
  111. Milano, A. Sul potere fosforilizzante del cristallino umano transparente e catarattoso.Ann. Ottal. Clin. ocullist, 69:175–181 (1941).Google Scholar
  112. Mitchell, H. S. &W. M. Dodge. Cataract in rats fed on high lactose rations.J. Nutr. 9:37–49 (1935).Google Scholar
  113. Mortimer, D. C. Paper chromatographic separation of some biologically important phosphate esters.Canad. J. Chem. 30:653–660 (1952).Google Scholar
  114. Müller, H. K. Über Linsenstoffwechseluntersuchungen.Ber. dtsch. ophthal. Ges. 50:167–171 (1934).Google Scholar
  115. —— Über den Gehalt an säurelöslichem organischem Phosphat der gesunden und der kranken Linse.Arch. Augenheilk. 109:487–502 (1936).Google Scholar
  116. ——,U. Dardenne, O. Hockwin, O. Kleifeld &G. Schafhausen. Altersbedingte Veränderungen im Stoffwechsel der Linse.Acta XVIII Conc. ophthal. 1958, Belgica, 1:750–763 (1959).Google Scholar
  117. Nadler, H. L., T. Inouye &D. Y.-Y. Hsia. Leucocyte transferase in negroes.Lancet, 11:157 (1967).Google Scholar
  118. Noda, L. Adenosine triphosphate-adenosine monophosphate transphosphorylase. Kinetic studies.J. biol. Chem. 232:237–250 (1952).Google Scholar
  119. Nordmann, J. Biologic du cristallin, Paris: Masson & Cie, (1954).Google Scholar
  120. —— Acquisitions récentes dans le domaine de la biologie du cristallin.Progr. Ophtal. 12:1–264 (1962).Google Scholar
  121. —— A propos de la cataracte galactosique.Bull. Acad. Roy. Méd. Belg. VIIe sér. 2:511–530 (1962).Google Scholar
  122. —— &P. Mandel. Etude quantitative des composés phosphorés acido-solubles du cristallin de mammifères jeunes et âgés.C.R. Acad. Sci. 235:834–836 (1952).Google Scholar
  123. —— Métabolisme énergétique et état dynamique des protéines du cristallin.Acta KVIII Conc. ophthal. 1958, Belgica, 1:764–769 (1959).Google Scholar
  124. —— &J. Klethi. Les anomalies initiales du métabolisme glucidique dans la cataracte expérimentale par surcharge en galactose.Docum. ophthal. 16:199–207 (1962).CrossRefPubMedGoogle Scholar
  125. Paladini, A. C. &L. F. Leloir. Studies on uridine-diphosphateglucose.Biochem. J. 51:426–430 (1952).PubMedGoogle Scholar
  126. Palm, E. On the phosphate exchange between the blood and the eye.Acta ophthal. Suppl. 32, (1948).Google Scholar
  127. Papenberg, K. in Zur Bedeutung der freien Nucleotide. Colloq. Ges. physiol. Chem. Mosbach,25–35 Heidelberg: Springer Verlag (1961).Google Scholar
  128. Paulus, W., O. Hockwin &O. Kleifeld. Enzymatische Bestimmung der „wahren Glucose” in Augenlinsen. Die Beeinflussbarkeit der Glucosekonzentration in Kälber- und Rinderlinsen.v. Graefes Arch. Ophthal. 163:309–313 (1961).Google Scholar
  129. Pflüger, E. F. W. Das Glykogen. Bonn (1905).Google Scholar
  130. Pontremoli, S., A. (de) Flora, E. Grazi, G. Mangiarotti, A. Bonsignore &D. L. Horecker. Crystalline D-gluconate 6-phosphate dehydrogenase.J. biol. Chem. 236:2975–2980 (1961).PubMedGoogle Scholar
  131. Reissig, J. L., J. L. STrominger &L. F. Leloir. A modified colorimetric method for the estimation of N-acetylamino sugars.J. biol. Chem. 217:959–966 (1955).PubMedGoogle Scholar
  132. Ritter, J. A. &E. J. Cannon. Galactosemia with cataracts. Report of a case with notes on physiopathology.New England J. Med. 252:747–752 (1955).Google Scholar
  133. Rizzo, A. Contributo alla biachimica del cristallino. Sulla presenza di P labile e Sul comportamento di attri compressi fosforati.Boll. Soc. ital. Biol. sper. 12:810–813 (1937).Google Scholar
  134. Robinson, A. The assay of galactokinase and galactose-1-phosphate uridyltransferase activity in human erythrocytes.J. exptl. Med. 118:359–370 (1963).CrossRefGoogle Scholar
  135. Roe, J. H. The determination of sugar in blood and spinal fluid with anthrone reagent.J. biol. Chem. 212:335–343 (1955).PubMedGoogle Scholar
  136. Rommel, K. &K. Cramer. Galaktosestoffwechsel-Störung bei juveniles Katarakten.Munch. med. Wschr. 109:238–242 (1967)PubMedGoogle Scholar
  137. Sacks, J. A fractionation procedure for the acido-soluble phosphorus compounds of liver.J. biol. Chem. 181:655–666 (1949).PubMedGoogle Scholar
  138. Sage-Girardel, N. Le test de provocation au galactose dans la cataracte congénitale. Strasbourg: Thèse Mèd. (1969).Google Scholar
  139. Schmitz, H. in: „Zur Bedeutung der freien Nucleotide. Colloq. Ges. physiol. Chem., Mosbach, 1–25. Heidelberg: Springer Verlag (1961).Google Scholar
  140. Schrader, X. E. Stoffwechselstörungen bei Galaktosämie.Klin. Mbl. Augenheilk. 153:151 (1968) et Comm. pers. (1968).Google Scholar
  141. Schwartz, B. A critical analysis of the closed system technique for lens culture.Arch. Ophthal. 63:593–606 (1960a).PubMedGoogle Scholar
  142. —— Initial studies on the use of an open system for the culture of the rabbit lens.Arch. Ophthal. 63:643–659 (1960b).PubMedGoogle Scholar
  143. Schwarz, V. &L. Goldberg. Galactose-1-phosphate in galactose cataract.Biochem. biophys. Acta 18:310–311 (1955).CrossRefPubMedGoogle Scholar
  144. Scott, D. B. &S. S. Cohen. The oxidative pathway of carbohydrate metabolism in Escherichia coli. The isolation and properties of glucose-6-phosphate dehydrogenase and 6-phospho-gluconate dehydrogenase.Biochem. J. 55:23–33 (1953).PubMedGoogle Scholar
  145. Segal, S., A. Blair &X. Roth. The metabolism of galactose by patients with congenital galactosemia.Amer. J. Med. 38:62–70 (1965).PubMedGoogle Scholar
  146. Siegel, L. &S. Englard. Beef-heart malic dehydrogenases. Properties of the enzyme purified from extracts of acetone-dried powders.Biochim. biophys. Acta, 54:67–76 (1961).CrossRefPubMedGoogle Scholar
  147. Sippel, T. O. Measurement of oxygen consumption in the rat lens with a flow respirometer.Invest. Ophthal. 1:377–384 (1962a).PubMedGoogle Scholar
  148. ——Pyridine nucleotides in normal and diabetic rat lenses.Exptl. Eye Res. 1: 368–371 (1962b).Google Scholar
  149. Slein, M. W. in: Methoden der enzymatischen Analyse. 117–123. Weinheim: Verlag Chemie (1962).Google Scholar
  150. Spackman, D. X., W. H. Stein &S. Moore. Automatic recording apparatus for use in the chromatography of amino acids.Anal. Chem. 30:1190–1206 (1958).CrossRefGoogle Scholar
  151. Süllmann, X. Der Kohlehydratstoffwechsel der Linse. Die Bildung von Phosphorsäure in der Linse.Arch. Augenheilk. 110:303–320 (1937).Google Scholar
  152. Toselli, C. &R. Bartalena. Contributo allo studio della cataratta galattosemica.Ann. Ottal. Clin. oculist. 86:197–214 (1960).Google Scholar
  153. Umbreit, W. W., R. H. Durris &J. F. Stauffer in: Manometric technics. Minneapolis: Burgess Publ. Co. (1949).Google Scholar
  154. Uriel, J. Méthode d'électrophorése dans des gels d'acrylamide agarose.Bull. Soc. Chim. biol., 48:969–982 (1966).PubMedGoogle Scholar
  155. Virmaux, N. &P. Mandel. Etude quantitative des acides ribonucléiques du cristallin chez diverses espèces de vertébrés.C.R. Soc. Biol. 150:620–622 (1961).Google Scholar
  156. —— Succinic dehydrogenase activity and oxidative phosphorylation of the mitochondria in the crystalline lens of bovines.Nature, 197:792–793 (1963).PubMedGoogle Scholar
  157. ——A. Porte &A. Brini. Etude enzymatique des fractions mitochondriales du cristallin contrôlées au microscope électronique.Bull. Sac. Ophtal. France, 61:708–710 (1961).Google Scholar
  158. ——J. Klethi &P. Mandel. Etude du renouvellement des nucleotides et de l'acide ribonucléique du cristallin.J. Phisiol. 55:356 (1963).Google Scholar
  159. Wachtl, C. &V. E. Kinsey. Studies on the crystalline lens. Utilization of several carbohydrates and their effects on mitosis of lens epithelium.Amer. J. Ophthal. 44, II:318–325 (1957).PubMedGoogle Scholar
  160. Weekers, R. Métabolisms hydrocarboné du cristallin. Transparence de l'organe isolé en présence de glucose, lévulase ou galactose.Ophthalmologica, 98:142–148 (1939).Google Scholar
  161. Weill, A. D. Recherches sur la constitution et le métabolisms des acides ribonucléiques du foie et du pancréas de rat. Strasbourg: Thèse de Coctotat ès-Sciences Naturelles (1958).Google Scholar
  162. Wenner, C. E. &S. Weinhouse. An isotope tracer study of glucose catabolism pathways in liver.J. biol. Chem. 219:691–704 (1956).PubMedGoogle Scholar
  163. Wood, X. G., A. Katz &B. R. Landau. Estimation of pathways of carbohydrate metabolism.Biochem. Z. 338:809–847 (1963).PubMedGoogle Scholar
  164. Wyatt, G. R. The purine and pyrimidine composition of deoxypentose nucleic acids.Biochem. J. 48:584–590 (1951).PubMedGoogle Scholar
  165. Yudkin, A. M. &C. X. Arnold. Cataracts produced in albino rats on a ration containing a high proportion of lactose or galactose.Arch. Ophthal. 14:960–966 (1935).Google Scholar

Copyright information

© Kluwer Academic Publishers 1970

Authors and Affiliations

  • Jean Klethi
    • 1
  1. 1.Strasbourg

Personalised recommendations