Human Genetics

, Volume 97, Issue 6, pp 777–783 | Cite as

Extensive polymorphism of ABO blood group gene: three major lineages of the alleles for the common ABO phenotypes

  • Kenichi Ogasawara
  • Makoto Bannai
  • Naruya Saitou
  • Ryuichi Yabe
  • Kenichi Nakata
  • Michiko Takenaka
  • Kiyoshi Fujisawa
  • Makoto Uchikawa
  • Yoshihide Ishikawa
  • Takeo Juji
  • Katsushi Tokunaga
Original Investigation

Abstract

Polymorphism of the ABO blood group gene was investigated in 262 healthy Japanese donors by a polymerase chain reactions-single-strand conformation polymorphism (PCR-SSCP) method, and 13 different alleles were identified. The number of alleles identified in each group was 4 for A1 (provisionally called ABO*A101, *A102, *A103 and *A104 according to the guidelines for human gene nomenclature), 3 for B (ABO*B101, *B102 and *B103), and 6 for O (ABO*O101, *O102, *O103, *O201, *O202 and *O203). Nucleotide sequences of the amplified fragments with different SSCP patterns were determined by direct sequencing. Phylogenetic network analysis revealed that these alleles could be classified into three major lineages, *A/*O1, *B and *O2. In Japanese, *A102 and *13101 were the predominant alleles with frequencies of 83% and 97% in each group, respectively, whereas in group O, two common alleles, *O101 (43%) and *O201 (53%), were observed. These results may be useful for the establishment of ABO genotyping, and these newly described ABO alleles would be advantageous indicators for population studies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandelt H-J (1994) Phylogenetic networks. Verh Naturwiss Vereins Hamburg (NF) 34: 51–71Google Scholar
  2. Bannai M, Tokunaga K, Lin L, Kuwata S, Mazda T, Amaki I, Fujisawa K, Juji T (1994a) Discrimination of human HLA-DRB1 alleles by PCR-SSCP (single-strand conformation polymorphism) method. Eur J Immunogenet 21: 1–9PubMedGoogle Scholar
  3. Bannai M, Tokunaga K, Lin L, Park MH, Kuwata S, Fujisawa K, Juji T (1994b) A new HLA-DR 11 DRB1 allele found in a Korean. Hum Immunol 39: 230–232CrossRefPubMedGoogle Scholar
  4. Bennett EP, Steffensen R, Clausen H, Weghuis DO, van Kessel AG (1995) Genomic cloning of the human histo-blood group ABO locus. Biochem Biophys Res Commun 206: 318–325CrossRefPubMedGoogle Scholar
  5. Fischer GF, Fae I, Dub E, Pick WF (1992) Analysis of the gene polymorphism of ABO blood group specific transferases helps diagnosis of acquired B status. Vox Sang 62: 113–116PubMedGoogle Scholar
  6. Fitch WM (1977) On the problem of discovering the most parsimonious tree. Am Nat 111: 223–257CrossRefGoogle Scholar
  7. Franco RF, Simões BP, Guerreiro JF, Santos SEB, Zago MA (1994) Molecular bases of the ABO blood groups of Indians from the Brazilian Amazon region. Vox Sang 67: 299–301PubMedGoogle Scholar
  8. Fukumori Y, Ohnoki S, Shibata H, Yamaguchi H, Nishimukai H (1995) Genotyping of ABO blood groups by PCR and RFLP analysis of 5 nucleotide positions. Int J Legal Med 107: 179–182CrossRefPubMedGoogle Scholar
  9. Grunnet N, Steffensen R, Bennett EP, Clausen H (1994) Evaluation of histo-blood group ABO genotyping in a Danish population: frequency of a novel O allele defined as O2. Vox Sang 67: 210–215PubMedGoogle Scholar
  10. Johnson PH, Hopkinson DA (1992) Detection of ABO blood group polymorphism by denaturing gradient gel electrophoresis. Hum Mol Genet 1: 341–344PubMedGoogle Scholar
  11. Lee JC-I, Chang J-G (1992) ABO genotyping by polymerase chain reaction. J Forensic Sci 37: 1269–1275PubMedGoogle Scholar
  12. Matsuki T, Nakajima T, Furukawa K (1994)O-gene detection by allele specific amplification in the ABO blood group system. Jpn J Hum Genet 39: 293–297CrossRefPubMedGoogle Scholar
  13. O'Keefe DS, Dobrovic A (1993) A rapid and reliable PCR method for genotyping the ABO blood group. Hum Mutat 2: 67–70CrossRefPubMedGoogle Scholar
  14. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86: 2766–2770PubMedGoogle Scholar
  15. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  16. Shows TB, McAlpine PJ, Boucheix C, Collins FS, Conneally PM, Frezal J, Gershowitz H, Goodfellow PN, Hall JG, Issitt P, Jones CA, Knowles BB, Lewis M, McKusick VA, Meisler M, Morton NE, Rubinstein P, Schanfield MS, Schmickel RD, Skolnick MH, Spence MA, Sutherland GR, Traver M, van Cong N, Willard HF (1987) Guidelines for human gene nomenclature: an international system for human gene nomenclature (ISGN). Cytogenet Cell Genet 46: 11–28PubMedGoogle Scholar
  17. Stroncek DF, Konz R, Clay ME, Houchins JP, McCullough J (1995) Determination of ABO glycosyltransferase genotypes by use of polymerase chain reaction and restriction enzymes. Transfusion 35: 231–240PubMedGoogle Scholar
  18. Ugozzoli L, Wallace RB (1992) Application of an allele-specific polymerase chain reaction to the direct determination of ABO blood group genotypes. Genomics 12: 670–674CrossRefPubMedGoogle Scholar
  19. Yamamoto F, Marken J, Tsuji T, White T, Clausen H, Hakomori S (1990a) Cloning and characterization of DNA complementary to human UDP-GalNAc: Fucα1→2Galα1→3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem 265: 1146–1151PubMedGoogle Scholar
  20. Yamamoto F, Clausen H, White T, Marken J, Hakomori S (1990b) Molecular genetic basis of the histo-blood group ABO system. Nature 345: 229–233CrossRefPubMedGoogle Scholar
  21. Yamamoto F, McNeill PD, Hakomori S (1992) Human histo-blood group Az transferase coded by A2 allele, one of the A subtypes, is characterized by a single base deletion in the coding sequence, which results in an additional domain at the carboxyl terminal. Biochem Biophys Res Commun 187: 366–374PubMedGoogle Scholar
  22. Yamamoto F, McNeill PD, Yamamoto M, Hakomori S, Harris T, Judd WJ, Davenport RD (1993a) Molecular genetic analysis of the ABO blood group system. 1. Weak subgroups: A3 and B3 alleles. Vox Sang 64: 116–119PubMedGoogle Scholar
  23. Yamamoto F, McNeill PD, Kominato Y, Yamamoto M, Hakomori S, Ishimoto S, Nishida S, Shima M, Fujimura Y (1993b) Molecular genetic analysis of the ABO blood group system. 2.cis-AB alleles. Vox Sang 64: 120–123PubMedGoogle Scholar
  24. Yamamoto F, McNeill PD, Yamamoto M, Hakomori S, Harris T (1993c) Molecular genetic analysis of the ABO blood group system. 3. Ax and B(A) alleles. Vox Sang 64: 171–174PubMedGoogle Scholar
  25. Yamamoto F, McNeill PD, Yamamoto M, Hakomori S, Bromilow IM, Duguid JKM (1993d) Molecular genetic analysis of the ABO blood group system. 4. Another type of O allele. Vox Sang 64: 175–178PubMedGoogle Scholar
  26. Yamamoto F, McNeill PD, Hakomori S (1995) Genomic organization of human histo-blood group ABO genes. Glycobiology 5: 51–58PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Kenichi Ogasawara
    • 1
  • Makoto Bannai
    • 1
  • Naruya Saitou
    • 2
  • Ryuichi Yabe
    • 1
  • Kenichi Nakata
    • 1
  • Michiko Takenaka
    • 1
  • Kiyoshi Fujisawa
    • 1
  • Makoto Uchikawa
    • 3
  • Yoshihide Ishikawa
    • 3
  • Takeo Juji
    • 3
  • Katsushi Tokunaga
    • 3
    • 4
  1. 1.Japanese Red Cross Tokyo Metropolitan Blood CenterTokyoJapan
  2. 2.Laboratory of Evolutionary GeneticsNational Institute of GeneticsJapan
  3. 3.Japanese Red Cross Central Blood CenterJapan
  4. 4.Department of Human Genetics, Graduate School of International HealthUniversity of TokyoTokyoJapan

Personalised recommendations