Advertisement

Human Genetics

, Volume 97, Issue 6, pp 759–764 | Cite as

Distribution and frequency of a polymorphicAlu insertion at the plasminogen activator locus in humans

  • S. A. Tishkoff
  • G. Ruano
  • J. R. Kidd
  • K. K. Kidd
Original Investigation

Abstract

We have investigated the frequency distribution, across a broad range of geographically dispersed populations, of alleles of the polymorphicAlu insertion that occurs within the 8th intron of the tissue plasminogen activator gene (PLAT). ThisAlu is a member of a recently derived subfamily ofAlu elements that has been expanding during human evolution and continues to be transpositionally active. We used a “population tube” approach to screen 10 chromosomes from each of 19 human populations for presence or absence of thisAlu in the PLAT locus and found that all tested populations are dimorphic for presence/absence of this insertion. We show that the previously publishedEcoRI,HincII,PstI,TaqI, andXmnI polymorphisms at the PLAT locus all result from insertion of thisAlu and we use both restriction fragment length polymorphism and polymerase chain reaction analysis to examine the frequency ofAlu(+) andAlu(−) alleles in a sample of 1003 individuals from 27 human populations and in 38 nonhuman primates. Nonhuman primates are monomorphic for theAlu(−) allele. Human populations differ substantially in allele frequency, and in several populations both alleles are common. Our results date the insertion event prior to the spread and diversification of modern humans.

Keywords

Plasminogen Human Population Plasminogen Activator Restriction Fragment Length Polymorphism Restriction Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson MA, Gusella J (1984) Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro 20:856–858PubMedGoogle Scholar
  2. Antonarakis SE, Chakravanti A, Halloran SL, Hudson RR, Feissee L, Karathanasis SK (1988) DNA polymorphism haplotypes of the human apolipoprotein APO Al-APOC3-APOA4 gene cluster. Hum Genet 80:265–273CrossRefPubMedGoogle Scholar
  3. Barr CL, Kidd KK (1993) Population frequencies of the Al allele at the dopamine D2 receptor locus. Biol Psychiatry 34:204–209CrossRefPubMedGoogle Scholar
  4. Batzer MA, Deininger PL (1991) A human-specific subfamily ofAlu sequences. Genomics 9:481–487CrossRefPubMedGoogle Scholar
  5. Batzer MA, Kilroy GE, Richard PE, Shaikh TH, Desselle TD, Hopeens CL, Deininger PL (1990) Structure and variability of recently inserted Alu family members. Nucleic Acids Res 18:6793–6798PubMedGoogle Scholar
  6. Batzer MA, Gudi VA, Mena JC, Foltz DW, Herrera RJ, Deininger PL (1991) Amplification dynamics of human-specific (HS)Alu family members. Nucleic Acids Res. 19:3619–3623PubMedGoogle Scholar
  7. Batzer MA, Stoneking M, Alegria-Hartman M, Bazan H, Kass DH, Shaikh TH, Novick GE, Ioannou PA, Scheer WD, Herrera RJ, Deininger P (1994) African origin of human-specific polymorphicAlu insertions. Proc Natl Acad Sci USA 91:12288–12292PubMedGoogle Scholar
  8. Benham FJ, Spurr N, Povey S, Brinton BT, Goodfellow PN, Solomon E, Harris TJR (1984) Assignment of tissue-type plasminogen activator to chromosome 8 in man and identification of a common restriction length polymorphism within the gene. Mol Biol Med 2:251–259PubMedGoogle Scholar
  9. Benham FJ, Spurr N, Povey S, Brinton BT, Solomon E, Goodfellow PN, Harris TJR (1985) Tissue-type plasminogen activator (PLAT) maps to chromosome 8 and there is a common restriction length polymorphism within the gene. Cytogenet Cell Genet 40:581Google Scholar
  10. Bowcock AM, Bucci C, Hebert JM, Kidd JR, Kidd KK, Friedlander J, Cavalli-Sforza LL (1987) Study of 47 DNA markers in five populations from four continents. Gene Geogr 1:47–64PubMedGoogle Scholar
  11. Bowcock AM, Kidd JR, Mountain JL, Hebert JM, Carotenuto L, Kidd KK, Cavalli-Sforza LL (1991) Drift, admixture, and selection in human evolution: a study with DNA polymorphisms. Proc Natl Acad Sci USA 88:839–843PubMedGoogle Scholar
  12. Britten RJ, Baron WF, Strout DB, Davidson EH (1988) Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85:4770–1774PubMedGoogle Scholar
  13. Deininger PL (1989) SINEs, short interspersed repeated DNA elements in higher eukaryotes. In: Howe M, Berg D (eds) Mobile DNA. Washington DC, ASM Press, pp 619–636Google Scholar
  14. Deininger PL, Daniels GR (1986) The recent evolution of mammalian repetitive DNA elements. Trends Genet 2:76–80CrossRefGoogle Scholar
  15. Deininger PL, Slagel VK (1988) Recently amplifiedAlu family members share a common parentalAlu sequence. Mol Cell Bio 18:4566–4569Google Scholar
  16. Deininger PL, Jolly DJ, Rubin CM, Friedmann T, Schmid CW (1981) Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol 151:17–33CrossRefPubMedGoogle Scholar
  17. Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, Keith TP, Bowden DW, Smith DR, Lander ES et al. (1987) A genetic linkage map of the human genome. Cell 51:319–337PubMedGoogle Scholar
  18. Economou-Pachnis A, Tsichlis PN (1985) Insertion of anAlu SINE in the human homologue of the Mlvi-2 locus. Nucleic Acids Res 13:8379–8387PubMedGoogle Scholar
  19. Friezner Degen SJ, Rajput B, Reich E (1986) The human tissue plasminogen activator gene. J Biol Chem 261:6972–6985Google Scholar
  20. Goldman D, Brown GL, Albaugh B, Robin R, Goodson S, Trunzo M, Akhtar L, Lucas-Derse L, Long J, Linnoila M, Dean M (1993) DRD2 dopamine receptor genotype, linkage disequilibrium, and alcoholism in American Indians and other populations. Alcohol Clin Exp Res 17:199–204PubMedGoogle Scholar
  21. Hill A (1994) Late Miocene and early Pliocene hominoids from Africa. In: Corruccine RS, Ciochon RL (eds) Integrative paths to the past: paleoanthropological advances in honor of F. Clark Howell. Prentice Hall Press, Englewood Cliffs, NJ, pp 123–145Google Scholar
  22. Jurka J, Smith T (1988) A fundamental division in theAlu family of repeated sequences. Proc Nall Acad Sci USA 85:4775–4778Google Scholar
  23. Kidd JR, Black FL, Weiss KM, Balazs I, Kidd KK (1991) Studies of three Amerindian populations using nuclear DNA polymorphisms. Hum Biol 63:775–794PubMedGoogle Scholar
  24. Knowler WC, Bennet PH, Hamman RF, Miller M (1978) Diabetes incidence and prevalence in Pima Indians: a 19-fold greater incidence than in Rochester, Minnesota. Am J Epidemiol 108:97–505Google Scholar
  25. Leeflang EP, Liu W, Hashimoto C, Choudary PV, Schmid CW (1992) Phylogenetic evidence for multipleAlu source genes. J Mol Evol 35:7–16CrossRefPubMedGoogle Scholar
  26. Lichter JG, Barr CL, Kennedy JL, Van Tol HHM, Kidd KK, Livak KJ (1993) A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum Mol Genet 2:767–773PubMedGoogle Scholar
  27. Lim D, Coleman RT, Assmann G, Frossard PM (1986) Deletion of anAlu sequence in the 5′ of the apolipoprotein AI gene associated with decreased serum HDL-cholesterol levels (abstract). Am J Hum Genet 39:621Google Scholar
  28. Lu RB, Ko HC, Chang FM, Castiglione CM, Schoolfield G, Pakstis AJ, Kidd JR, Kidd KK (1995) No association between alcoholism and multiple polymorphisms at the dopamine D2 receptor gene (DRD2) in three distinct Taiwanese populations. Biol Psychiatry (in press)Google Scholar
  29. Ludwig M, Wohn KD, Langer G, Schleuning WD, Olek K (1991) Detection of a Tagl polymorphism within the human TPA gene (PLAT). Nucleic Acids Res 19:4575PubMedGoogle Scholar
  30. Matera GA, Hellmann U, Schmid CW (1990a) A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol 10:5424–5432PubMedGoogle Scholar
  31. Matera GA, Hellmann U, Hintz MF, Schmid CW (1990b) Recently transposedAlu repeats result from multiple source genes. Nucleic Acids Res 18:6019–6023PubMedGoogle Scholar
  32. Orita M, Sekiya T, Hayashi K (1990) DNA sequence polymorphisms inAlu repeats. Genomics 8:271–278CrossRefPubMedGoogle Scholar
  33. Perna NT, Batzer MA, Deininger PL, Stoneking M (1992)Alu insertion polymorphism: a new type of marker for human population studies. Hum Biol 64:641–648PubMedGoogle Scholar
  34. Quentin Y (1988) TheAlu family developed through successive waves of fixation closely connected with primate lineage history. J Mol Evol 27:194–202CrossRefPubMedGoogle Scholar
  35. Rogers J (1983) Retroposons defined. Nature 301:460CrossRefPubMedGoogle Scholar
  36. Ruano G, Kidd KK (1991) Coupled amplification and sequencing of genomic DNA. Proc Natl Acad Sci USA 88:2815–2819PubMedGoogle Scholar
  37. Ruano G, Deinard AS, Tishkoff S, Kidd KK (1994) Detection of DNA sequence variation via deliberate heteroduplex formation from genomic DNAs amplified en masse in “population tubes.” PCR Methods Appl 3:225–231PubMedGoogle Scholar
  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  39. Schmid CW, Shen CKJ (1985) The evolution of interspersed repetitive DNA sequences in mammals and other vertebrates. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 323–358Google Scholar
  40. Schmid CW, Deka N, Matera AG (1989) Repetitive human DNA: the shape of things to come. In: Adolph KW (ed) Chromosomes: eukaryotic, prokaryotic and viral, vol 1. CRC Press, Boca Raton, Fla, pp 3–29Google Scholar
  41. Slagel V, Flemington E, Traina-Dorge V, Bradshaw H, Deininger PL (1987) Clustering and subfamily relationships of theAlu family in the human genome. Mol Biol Evol 4:19–29PubMedGoogle Scholar
  42. Stringer CB, Andrews P (1988) Genetic and fossil evidence for the origin of modern humans. Science 239:1263–1268PubMedGoogle Scholar
  43. Tishkoff SA, Dietzsch E, Speed W, Pakstis AJ, Cheung K, Kidd JR, Bonné-Tamir B, Santachiara-Benerecetti AS, Moral P, Watson E, Krings M, Pääbo S, Risch N, Jenkins T, Kidd KK (1996) Global patterns of linkage disequilibrium at the CD41ocus and modern human origins. Science 271:1380–1387PubMedGoogle Scholar
  44. Ullu E, Murphy S, Melli M (1982) Human 7S RNA consists of a 140 nucleotide middle repetitive sequence inserted in anAlu sequence. Cell 29:195–202CrossRefPubMedGoogle Scholar
  45. Vidaud D, Vidaud M, Bahnak BR, Siguret V, Gispert Sanchez S, Laurian Y, Meyer D, Goossens M, Lavergne JM (1993) Haemophilia B due to a de novo insertion of a human-specificAlu subfamily member within the coding region of the factor IX gene. Eur J Hum Genet 1:30–36PubMedGoogle Scholar
  46. Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS (1991) A de novoAlu insertion results in neurofibromatosis type 1. Nature 353:864–866CrossRefPubMedGoogle Scholar
  47. Weiner AM, Deininger PL, Efstratiadis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55:631–661CrossRefPubMedGoogle Scholar
  48. Willard C, Nguyen HT, Schmid CW (1987) Existence of at least three distinctAlu subfamilies. J Mot Evol 26:180–186Google Scholar
  49. Wilson AC, Sarich VM (1969) A molecular time scale for human evolution. Proc Natl Acad Sci USA 63:1088–1093PubMedGoogle Scholar
  50. Wohn KD, Ludwig M, Langer G, Olek K, Schleuning WD (1990) XmnI polymorphism in the human TPA gene. Nucleic Acids Res 18:5326PubMedGoogle Scholar
  51. Yang-Fang TL, Opdenakker G, Volckaert G, Francke U (1986) Human tissue-type plasminogen activator gene located near chromosomal breakpoint in myeloproliferative disorder. Am J Hum Genet 39:79–87Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • S. A. Tishkoff
    • 1
  • G. Ruano
    • 1
  • J. R. Kidd
    • 1
  • K. K. Kidd
    • 1
  1. 1.Department of GeneticsYale UniversityNew HavenUSA

Personalised recommendations