Applied Microbiology and Biotechnology

, Volume 23, Issue 6, pp 456–461 | Cite as

Stability of the recombinant plasmid carrying theBacillus amyloliquefaciens α-amylase gene inB. subtilis

  • Jari Olavi Vehmaanperä
  • Matti Pellervo Korhola
Applied Microbiology

Summary

Theα-amylase gene ofBacillus amyloliquefaciens has previously been cloned into pUB110 to give the recombinant plasmid, pKTH10 (Palva 1982. Gene 19:81–87). Strains transformed by this plasmid are promising candidates for industrialα-amylase production. The stability of pKTH10 was determined in variousB. subtilis strains possessing specific alleles which affect the level ofα-amylase secretion.B. subtilis strains carrying pKTH10 were cultivated in starch-containing medium for up to 50 generations without antibiotic selection and then screened for the presence of pKTH10. The plasmid proved stable enough (< 1.0% cured after 50 generations) for industrial batchwise enzyme production in two strains, but in asacU9 strain (thesacU9 mutation increases concominantly the production ofα-amylase levansucrase and proteases) 99.9% of cells had lost pKTH10 after 50 generations, although the parental plasmid (pUB110) was stable in this strain (0.09% cured after 50 generations). The instability of pKTH10 in thesacU9 strain seems somehow to be related to high expression of the clonedα-amylase gene: when grown in a medium restrictingα-amylase production, only 0.53% ofsacU9 cells had lost pKTH10 after 50 generations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiba S, Kitai K, Imanaka T (1983) Cloning and expression of thermostableα-amylase gene fromBacillus stearothermophilus inBacillus stearothermophilus andBacillus subtilis. Appl Environ Microbiol 46:1059–1065Google Scholar
  2. Aiba S, Koizumi J (1984) Effects of temperature on plasmid stability and penicillinase productivity in a transformant ofBacillus stearothermophilus. Biotechnol Bioeng 26:1026–1031Google Scholar
  3. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523Google Scholar
  4. Carrier MJ, Nugent ME, Tacon WCA, Primrose SB (1983) High expression of cloned genes inE. coli and its consequences. Trends Biotechnol 1:109–113CrossRefGoogle Scholar
  5. Chang S, Cohen SN (1979) High frequency transformation ofBacillus subtilis protoplasts by plasmid DNA. Molec Gen Genet 168:111–115CrossRefGoogle Scholar
  6. Debabov VG (1982) The industrial use of Bacilli. p 331–370. In Dubnau DA (ed) The Molecular Biology of the Bacilli Academic Press, Inc, New YorkGoogle Scholar
  7. Ehrlich SD, Niaudet B, Michel B (1982) Use of plasmids from Staphylococcus aureus for cloning of DNA in Bacillus subtilis. p 19–29. In Hofschneider PH, Goebel W (eds), Curr Top Microbiol Immunol 96. Springer-Verlag, New YorkGoogle Scholar
  8. Fischer EH, Stein EA (1961)α-Amylase from human saliva. Biochem Prep 8:27–33Google Scholar
  9. Fujii M, Takagi M, Imanaka T, Aiba S (1983) Molecular cloning of a thermostable neutral protease gene fromBacillus stearothermophilus in a vector plasmid and its expression inBacillus stearothermophilus andBacillus subtilis. J Bacteriol 154:831–837Google Scholar
  10. Gryczan TJ (1982) Molecular cloning inBacillus subtilis. p 307–329. In Dubnau D (ed) The Molecular Biology of the Bacilli. Academic Press, Inc, New YorkGoogle Scholar
  11. Gryczan TJ, Contente S, Dubnau D (1978) Characterization ofStaphylococcus aureus plasmids introduced by transformation intoBacillus subtilis. J Bacteriol 134:318–329Google Scholar
  12. Imanaka T, Aiba S (1981) A perspective on the application of genetic engineering: stability of recombinant plasmid. Ann N Y Acad Sci 369:1–14Google Scholar
  13. Imanaka T, Tanaka T, Tsunekawa H, Aiba S (1981) Cloning of the genes for penicillinase,penP andpenI, ofBacillus licheniformis in some vector plasmids and their expression inEscherichia coli, Bacillus subtilis, andBacillus licheniformis. J Bacteriol 147:776–786Google Scholar
  14. Kim SH, Ryu DDY (1984) Instability kinetics oftrp operon plasmid Co1E1-trp in recombinantEscherichia coli MV12[pVH5] and MV12trpR[pVH5]. Biotechnol Bioeng 26:497–502CrossRefGoogle Scholar
  15. Kreft J, Hughes C (1982) Cloning vectors derived from plasmids and phage of Bacillus, pp 1–17. In Hofschneider PH, Goebel W (eds) Curr Top Microbiol Immunol 96. Springer-Verlag, New YorkGoogle Scholar
  16. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218Google Scholar
  17. Michaelis S, Guarente L, Beckwith J (1983)In vitro construction and characterization ofphoA-lacZ gene fusions inEscherichia coli. J Bacteriol 154:356–365Google Scholar
  18. Ohmura K, Shiroza T, Nakamura K, Nakayama A, Yamane K, Yoda K, Yamasaki M, Tamura G (1984) ABacillus subtilis secretion vector system derived from theB. subtilis α-amylase promoter and signal sequence region, and secretion ofEscherichia coli β-lactamase by the vector system. J Biochem 95:87–93Google Scholar
  19. Ortlepp SA, Ollington JF, McConnell DJ (1983) Molecular cloning inBacillus subtilis of aBacillus licheniformis gene encoding a thermostable alpha-amylase. Gene 23:267–276CrossRefGoogle Scholar
  20. Palva I (1982) Molecular cloning ofα-amylase gene fromBacillus amyloliquefaciens and its expression inB. subtilis. Gene 19:81–87CrossRefGoogle Scholar
  21. Palva I, Pettersson RF, Kalkkinen N, Lehtovaara P, Sarvas M, Söderlund H, Takkinen K, Kääriäinen L (1981) Nucleotide sequence of the promoter and NH2-terminal signal peptide region of theα-amylase gene fromBacillus amyloliquefaciens. Gene 15:43–51CrossRefGoogle Scholar
  22. Palva I, Sarvas M, Lehtovaara P, Sibakov M, Kääriäinen L (1982) Secretion ofEscherichia coli β-lactamase fromBacillus subtilis by the aid ofα-amylase signal sequence. Proc Natl Acad Sci USA 79:5582–5586Google Scholar
  23. Priest FG (1977) Extracellular enzyme synthesis in the genusBacillus. Bacteriol Rev 41:711–753Google Scholar
  24. Projan SJ, Carleton S, Novick RP (1983) Determination of plasmid copy number by fluorescence densitometry. Plasmid 9:182–190CrossRefGoogle Scholar
  25. Saunders CW, Schmidt BJ, Mirot MS, Thompson LD, Guyer MS (1984) Use of chromosomal integration in the establishment and expression ofblaZ, aStaphylococcus aureus β-lactamasegene, inBacillussubtilis. J Bacteriol 157:718–726Google Scholar
  26. Scheer-Abramowitz J, Gryczan TJ, Dubnau D (1981) Origin and mode of replication of plasmids pE194 and pUB110. Plasmid 6:67–77Google Scholar
  27. Sibakov M, Sarvas M, Palva I (1983) Increased secretion ofα-amylase fromBacillus subtilis caused by multiple copies ofα-amylase gene fromB. amyloliquefaciens is not further increased by genes enhancing the basic level of secretion. FEMS Microbiol Lett 17:81–85CrossRefGoogle Scholar
  28. Steinmetz M, Kunst F, Dedonder R (1976) Mapping of mutations affecting synthesis of exocellular enzymes inBacillus subtilis. Molec Gen Genet 148:281–285CrossRefGoogle Scholar
  29. Wells JA, Ferrari E, Henner DJ, Estell DA, Chen EY (1983) Cloning, sequencing, and secretion ofBacillus amyloliquefaciens subtilisin inBacillus subtilis. Nucleic Acids Res 11:7911–7925Google Scholar
  30. Willemot K, Cornelis P (1983) Growth defects ofEscherichia coli cells which contain the gene of anα-amylase fromBacillus coagulans on a multicopy plasmid. J Gen Microbiol 129:311–319Google Scholar
  31. Yoneda Y (1980) Increased production of extracellular enzymes by the synergistic effect of genes introduced intoBacillus subtilis by stepwise transformation. Appl Environ Microbiol 39:274–276Google Scholar
  32. Yoneda Y, Yamane K, Maruo B (1973) Membrane mutation related to the production of extracellularα-amylase and protease inBacillus subtilis. Biochem Biophys Res Commun 50:765–770CrossRefGoogle Scholar
  33. Yoneda Y, Graham S, Young FE (1979) Cloning of a foreign gene coding forα-amylase inBacillus subtilis. Biochem Biophys Res Commun 91:1556–1564CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jari Olavi Vehmaanperä
    • 1
  • Matti Pellervo Korhola
    • 1
  1. 1.Research Laboratories of the Finnish State Alcohol Company, Alko LtdHelsinkiFinland

Personalised recommendations