Advertisement

Journal of Plant Research

, Volume 107, Issue 2, pp 161–164 | Cite as

Pollen development in a submerged plant,Ottelia alismoides (L.) Pers. (Hydrocharitaceae)

  • Masamichi Takahashi
Original Articles

Abstract

Exine structure and its developmental program in a submerged plant,Ottella alismoides (L.) Per. were investigated with scanning and transmission electron microscopies. Verrucate protrusions initiate on microspore plasma membrane at early tetrad stage. The verrucate protrusions develop into spines during free microspore stage. A foot layer is formed by accumulation of lamellated structure. The pollen grains ofOttelia alismoides are inaperturate, not omniaperturate, because of the well-developed foot layer. The inaperturate pollen grains ofOttelia are characterized by the spinous protrusions and the granular foot layer.

Key words

Exine Hydrophilous Inaperturate Ottelia Pollen Spine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erdtman, G. 1952. Pollen Morphology and Plant Taxonomy. I. Angiosperms. Almqvist and Wiksell, Stockholm.Google Scholar
  2. Karnovsky, M.J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol.27: 137A-138A.Google Scholar
  3. Kress, W.J. 1986. Exineless pollen structure and pollination system of tropicalHeliconia (Heliconiaceae).In S. Blackmore and I.K. Ferguson, ed., Pollen and Spores: Form and Function. Academic Press, London. pp. 329–346.Google Scholar
  4. Kushida, H. 1980. An improved embedding method using ERL 4206 and Quetol 653. J. Electron Microsc.29: 193–194.Google Scholar
  5. Martinsson, K. 1993. The pollen of SwedishCallitriche (Callitrichaceae) — trends towards submergence. Grana32: 198–209.Google Scholar
  6. Pettitt, J.M. 1976. Pollen wall and stigma surface in the marine angiosperms,Thalassia andThalassodendron. Micron7: 21–32.Google Scholar
  7. Pettitt, J.M. 1980. Reproduction in seagrasses: Nature of the pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann. Bot.45: 257–271.Google Scholar
  8. Pettitt, J.M. andJermy, A.C. 1975. Pollen in hydrophilous angiosperms. Micron5: 377–405.Google Scholar
  9. Shimakura, M. 1973. Palynomorphs of Japanese Plants. Spec. Pub. Osaka Mus. Nat. Hist., vol. 5. 60 pp. Pl. 122. Osaka (in Japanese).Google Scholar
  10. Takahashi, M. 1989. Pattern determination of the exine inCaesalpinia japonica (Leguminosae: Caesalpinioideae). Amer. J. Bot.76: 1615–1626.Google Scholar
  11. Takahashi, M. 1992. Development of spinous exine inNuphar japonicum De Candolle (Nymphaeaceae). Review Palaeobot. Palynol.75: 317–322.Google Scholar
  12. Takahashi, M. andKouchi, J. 1988. Ontogenetic development of spinous exine inHibiscus syriacus (Malvaceae). Amer. J. Bot.75: 1549–1558.Google Scholar
  13. Thanlkaimoni, G. 1978. Pollen morphological terms: proposed definition 1. IV Int. Palynol. Conf., Lucknow (1976–1977)1: 228–239.Google Scholar

Copyright information

© The Botanical Society of Japan 1994

Authors and Affiliations

  • Masamichi Takahashi
    • 1
  1. 1.Department of Biology, Faculty of EducationKagawa UniversityTakamatsuJapan

Personalised recommendations