Skip to main content
Log in

Impedance-gradient electrode reduces skin irritation induced by transthoracic defibrillation

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A new type of disposable external defibrillation electrode has been developed to reduce the skin irritation commonly associated with defibrillation and synchronised cardioversion. This design employs an impedance gradient to reduce the proportion of current delivered to the electrode periphery. The temperature distribution under the new electrode was compared with that of four other types of commercially available electrodes after repeated high-energy biphasic defibrillation discharges to domestic swine. Skin temperature distributions were acquired using non-invasive thermography. Measurements of the maximum temperature rise at each electrode site, taken 3.6s after the fifth defibrillation discharge, demonstrated that the new impedance-gradient electrode produced 50–60% less skin heating than two of the three uniform-impedance electrode designs. Histological examination of erythematous sites excised 24h after defibrillation quantified the associated skin damage using a scoring protocol developed for this study. In contrast to previous studies, histological examinations demonstrated second-degree skin burns following defibrillation. The new electrode design, however, induced 44–46% less skin damage than two of the traditional uniform-impedance electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANSI/AAMI (2003): ‘Medical electrical equipment—Part 2-4: Particular requirements for the safety of cardiac defibrillators (including automated external defibrillators)’. DF80:2003, Association for the Advancement of Medical Instrumentation

  • Bourland, J. D., Geddes, L. A., Graber, G. P., Foster, K. S., andSchoenlein, W. E. (1998): ‘Skin-temperature distribution under a new type of defibrillating electrode’,Biomed. Instrum. Technol.,32, pp. 164–168

    Google Scholar 

  • Carlslaw, H. S., andJaeger, J. C. (1959): ‘Conduction of heat in solids’ (Oxford University Press, Bristol, UK, 1959)

    Google Scholar 

  • Garcia, L. A., Pagan-Carlo, L. A., Stone, M. S., andKerber, R. E. (1998): ‘High perimeter impedance defibrillation electrodes reduce skin burns in transthoracic cardioversion’,Am. J. Cardiol.,82, pp. 1125–1127

    Article  Google Scholar 

  • Jiang, S. C., Ma, N., Li, H. J., andZhang, X. X. (2002): ‘Effects of thermal properties and geometrical dimensions on skin burn injuries’,Burns,28, pp. 713–717.

    Article  Google Scholar 

  • Jubb, K., Kennedy, P., andPalmer, N. (1993): ‘Pathology of domestic animals’ (Academic Press, San Diego, CA, 1993)

    Google Scholar 

  • Krasteva, V. T., andPapazov, S. P. (2002): ‘Estimation of current density distribution under electrodes for external defibrillation’,Biomed Eng. Online,1, p. 7

    Google Scholar 

  • Meyer, P. F., Gadsby, P. D., Van Sickle, D., Schoenlein, W. E., Foster, K. S., andGraber, G. P. (2004): ‘A reduced skin-irritation defibrillation electrode’.Proc. IEEE Northeast Bioeng. Conf.,30, pp. 15–16

    Google Scholar 

  • Pagan-Carlo, L. A., Stone, M. S., andKerber, R. E. (1997): ‘Nature and determinants of skin ‘burns’ after transthoracic cardioversion’,Am. J. Cardiol.,79, pp. 689–691

    Google Scholar 

  • Page, R. L., Kerber, R. E., Russell, J. K., Trouton, T., Waktare, J., Gallik, D., Olgin, J. E., Ricard, P., Dalzell, G. W., Reddy, R., Lazzara, R., Lee, K., Carlson, M., Halperin, B., andBardy, G. H. (2002): ‘Biphasic versus monophasic shock waveform for conversion of atrial fibrillation: the results of an international randomized, double-blind multicenter trial’,J. Am. Coll. Cardiol.,39, pp. 1956–1963

    Article  Google Scholar 

  • Papazov, S., Kostov, Z., andDaskalov, I. (2002): ‘Electrical current distribution under transthoracic defibrillation and pacing electrodes’,J. Med. Eng. Technol.,26, pp. 22–27

    Article  Google Scholar 

  • Rubinstein, J. T., Spelman, F. A., Soma, M., andSuesserman, M. F. (1987): ‘Current density profiles of surface mounted and recessed electrodes for neural prostheses’,IEEE Trans. Biomed. Eng.,34, pp. 864–875

    Google Scholar 

  • Suesserman, M. F., Spelman, F. A., andRubinstein, J. T. (1991): ‘In vitro measurement and characterization of current density profiles produced by non-recessed, simple recessed; and radially varying recessed stimulating electrodes’,IEEE Trans. Biomed. Eng.,38, pp. 401–408

    Article  Google Scholar 

  • Wiley, J. D., andWebster, J. G. (1982a): ‘Analysis and control of the current distribution under circular dispersive electrodes’,IEEE Trans. Biomed. Eng.,29, pp. 381–385

    Google Scholar 

  • Wiley, J. D., andWebster, J. G. (1982b): ‘Distributed equivalentcircuit models for circular dispersive electrodes’,IEEE Trans. Biomed. Eng.,29, pp. 385–389

    Google Scholar 

  • Williams, C. R., Geddes, L. A., Bourland, J. D., andFurgason, E. S. (1987): ‘Analysis of the current-density distribution from a tapered, gelled-pad external cardiac pacing electrode’,Med. Instrum.,21, pp. 329–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, P.F., Gadsby, P.D., Van Sickle, D. et al. Impedance-gradient electrode reduces skin irritation induced by transthoracic defibrillation. Med. Biol. Eng. Comput. 43, 225–229 (2005). https://doi.org/10.1007/BF02345959

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345959

Keywords

Navigation