Skip to main content
Log in

High-resolution 3D scaffold model for engineered tissue fabrication using a rapid prototyping technique

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Rapid prototyping, automatic image processing (computer-aided design (CAD)) and computer-aided manufacturing techniques are opening new and interesting prospects for medical devices and tissue engineering, especially for hard tissues such as bone. The development of a bone high-resolution scaffold prototype using these techniques is described. The results testify to the fidelity existing between microtomographic reconstruction and CAD. Furthermore, stereolithographic manufacturing of this scaffold, which possesses a high degree of similarity to the starting model as monitored by morphological evaluations (mean diameter 569±147 μm), represents a promising result for regenerative medicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ang, T. H., Sultana, F. S. A., Hutmacher, D. W., Wong, Y. S., Fuh, J. Y. H., Mo, X. M., Loh, H. T., Burde, T. E., andTeoh, S. H. (2002): ‘Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system’,Mat. Sci. Eng. C,20, pp. 35–42

    Article  Google Scholar 

  • Gomes, M. E., Godinho, J. S., Tchalamov, D., Cunha, A. M., andReis, R. L. (2002): ‘Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties’,Mater. Sci. Eng. C,20, pp. 19–26

    Article  Google Scholar 

  • Hing, K. A., Best, S. M., andBonfield, W. (1999): ‘Characterization of porous Hydroxyapatitem’,J. Mater. Sci. Mater. Med.,10, pp. 135–145

    Google Scholar 

  • Huang, H., Zhao, Y., Liu, Z., Zhang, Y., Zhang, H., Fu, T., andMa, X. (2003): ‘Enhanced osteoblast functions on RGD immobilized surface’,J. Oral Implant.,29, pp. 73–79

    Article  Google Scholar 

  • Hutmacher, D. W., Kirsch, A., Ackermann, K. L. andHuerzeler, M. B. (1998). ‘Matrix and carrier materials for bone growth factors—state of the art and future perspectives’,in Stark, G. B., Horch, R., andTancos, E. (Eds): ‘Biological matrices and tissue reconstruction’ (Springer, Heidelberg, Germany). pp. 197–206

    Google Scholar 

  • Hutmacher, D. W. (2000): ‘Scaffolds in tissue engineering bone and cartilage’,Biomaterials,21, pp. 2529–2543

    Article  Google Scholar 

  • Hutmacher, D. W. (2001): ‘Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives’,J. Biomater. Sci. Polymer Ed.,12, pp. 107–124

    Google Scholar 

  • Lorensen, W. E., andCline, H. E. (1987): ‘Marching cubes: a high resolution 3D surface construction algorithm’,Comput. Graph.,21, pp. 163–169

    Google Scholar 

  • Lu, H. H., El-Amin, S. F., Scott, K. D., andLaurencin, C. T. (2003): ‘Three-dimensional, bioactive, biodegradable, polymerbioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cellsin vitro’,J. Biomed. Mater. Res.,64A, pp. 465–474

    Article  Google Scholar 

  • Lu, L., andMikos, A. G. (1996): ‘The importance of new processing techniques in tissue engineering’,MRS Bull.,11, pp. 28–32

    Google Scholar 

  • Petzold, R., Zeilhofer, H. F., andKalender, W. A. (1999): ‘Rapid prototyping technology in medicine-basic and application’,Comput. Med. Imaging Graphics,23, pp. 277–284

    Google Scholar 

  • Potamianos, P., Amis, A. A., Forester, A. J., Mcgurk, M., andBircher, M. (1998): ‘Rapid prototyping for orthopedic surgery’,Proc. Inst. Mech. Eng. 212, pp. 383–393

    Google Scholar 

  • Sachlos, E. andCzernuszka, J. T. (2003): ‘Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds’,Eur. Cells Mater.,5, pp. 29–40

    Google Scholar 

  • Shen, H., Tan, J., andSaltzman, W. M. (2004): ‘Surface-mediated gene transfer from nanocomposites of controlled texture’,Nat. Mater.,3, pp. 569–574

    Article  Google Scholar 

  • Sun, W., andLal, P. (2002): ‘Recent development on computer aided tissue engineering’,Comput. Method Prog. Biomed.,67, pp. 85–103

    Google Scholar 

  • Takezawa, T. (2003): ‘A strategy for the development of tissue engineering scaffolds that regulate cell behaviour’,Biomaterials,24, pp. 2267–2275

    Article  Google Scholar 

  • Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., andFranzese, S. (2001): ‘Porosity graded hydroxyapatite ceramics to replace natural bone’,Biomaterials,22, pp. 1365–1370

    Article  Google Scholar 

  • Thomson, R. C., Yaszemski, M. J., andMikos, A. G. (1997): ‘Polymer scaffold processing’,in Lanza, R. P., Langer, R., andChick, W. L., (Eds): ‘Principles of tissue engineering’ (R. G. Landes Co., Austin, TX, USA, 1997). pp. 263–272

    Google Scholar 

  • Widmer, M. S., andMikos, A. G. (1998): ‘Fabrication of biodegradable polymer scaffolds for tissues engineering’,in Patrick, C. W. Jr,Mikos, A. G., andMcIntire L. V. (Eds): ‘Frontiers in tissue engineering’, (Elsevier Science New York, USA, 1998), pp. 107–120

    Google Scholar 

  • Yang, S., Leong, K. H. F., Du, Z., andChua, C. K. (2002): ‘The design of scaffolds for use in tissue engineering. Part II: Rapid prototyping techniques’,Tissue Eng.,7, pp. 679–689

    Google Scholar 

  • Yeong, W. Y., Chua, C. K., Leong, K. F., andChandrasekaran, M. (2004): ‘Rapid prototyping in tissue engineering: challenges and potential’,Trends Biotechnol.,22, pp. 643–652

    Article  Google Scholar 

  • Zein, I., Hutmacher, D. W., Tan, K. C., andTeoh, S. H. (2002): ‘Fused deposition modeling of novel scaffold architectures for tissue engineering applications’,Biomaterials,23, pp. 1169–1185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mattioli-Belmonte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quadrani, P., Pasini, A., Mattioli-Belmonte, M. et al. High-resolution 3D scaffold model for engineered tissue fabrication using a rapid prototyping technique. Med. Biol. Eng. Comput. 43, 196–199 (2005). https://doi.org/10.1007/BF02345954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345954

Keywords

Navigation