Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 242, Issue 1, pp 173–175 | Cite as

Variation of tritium concentration in the course of the degradation of fresh pine needles on a forest floor

  • N. Momoshima
  • H. Kakiuchi
  • T. Okai
  • Y. Maeda
Letter to the Editor

Abstract

Variation of tritium concentration was examined for 100 days in the course of degradation of fresh pine needles, which were left on a pine forest floor. No difference was observed on free water tritium (FWT) and organically bound tritium (OBT) concentrations of sterilized samples by gamma-ray irradiation or fumigation and control samples, attributable to incomplete sterilization. The OBT concentrations did not increase within the experimental period as the level of humus collected from the forest floor. The results suggest that a longer degradation time, more than 100 days, is necessary to elevate OBT up to the level, which is observed in the general environment.

Keywords

Physical Chemistry Inorganic Chemistry Control Sample Humus Experimental Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    UNSCEAR 1977 Report, United Nations, New York, 1977, p. 95.Google Scholar
  2. 2.
    UNSCEAR 1982 Report, United Nations, New York, 1982, p. 214.Google Scholar
  3. 3.
    Y. Hayashi, N. Momoshima, H. Kakiuchi, Y. Maeda, J. Radioanal. Nucl. Chem., in press.Google Scholar
  4. 4.
    G. L. Stewart, T. A. Wyerman, M. Sherman, R. Schneider, U. S. Geol. Survey Prof. Paper, 800-B (1972) B265.Google Scholar
  5. 5.
    Y. Takashima, N. Momoshima, M. Inoue, Y. Nakamura, Appl. Radiation Isotopes, 38 (1987) 255.Google Scholar
  6. 6.
    S. Fuma, Y. Inoue, Appl. Radiation Isotopes, 46 (1995) 991.CrossRefGoogle Scholar
  7. 7.
    N. Momoshima, Plant Ecophysiology, John Wiley & Sons, New York, 1997, p. 457.Google Scholar
  8. 8.
    W. Chorney, N. J. Scully, H. J. Dutton, Rad. Botany, 5 (1965) 257.Google Scholar
  9. 9.
    N. Momoshima, P. I. Tjahaja, T. Okai, Y. Takashima, Liquid Scintillation Spectrometry 1994, Radiocarbon, Tucson, 1996, p. 89.Google Scholar
  10. 10.
    N. Momoshima, H. Kakiuchi, T. Okai, S. Hisamatsu, Y. Maeda, J. Radioanal. Nucl. Chem., to be published.Google Scholar
  11. 11.
    T. Kaji, N. Momoshima, Y. Nakamura, Y. Takashima, Mem. Fac. Sci. Kyushu Univ. Ser. C, 14 (1986) 269.Google Scholar
  12. 12.
    A. S. Mason, H. G. Östlund, IAEA-SM-232/74, IAEA, Vienna, 1979, p. 3.Google Scholar
  13. 13.
    T. Okai, Y. Takashima, Appl. Radiation Isotopes, 42 (1991) 389.Google Scholar
  14. 14.
    N. Momoshima, T. Okai, T. Kaji, Y. Takashima, Radiochim. Acta, 54 (1991) 129.Google Scholar
  15. 14.
    D. H. Ehhalt, Water Resour. Res., 9 (1973) 1073.Google Scholar
  16. 15.
    J. C. MacFarilane, R. D. Rogers, J. D. V. Bradley, Environ. Sci. Technol., 13 (1979) 607.Google Scholar
  17. 16.
    J. A. Garland, L. C. Cox, Water Air Soil Poll., 14 (1980) 103.CrossRefGoogle Scholar
  18. 17.
    C. W. Sweet, C. E. Murphy, Jr., Environ. Sci. Tech., 18 (1984) 358.Google Scholar
  19. 18.
    M. Ichimasa, Y. Ichimasa, Y. Azuma, M. Komuro, K. Fujita, Y. Akita, J. Radiat. Res., 29 (1988) 144.Google Scholar
  20. 19.
    N. Momoshima, Y. Nagasato, Y. Takashima, Appl. Radiation Isotopes, 41 (1990) 655.Google Scholar
  21. 20.
    S. Diabate, S. Strack, Health Phys., 65 (1993) 698.Google Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • N. Momoshima
    • 1
  • H. Kakiuchi
    • 1
  • T. Okai
    • 2
  • Y. Maeda
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceKyushu UniversityHigashiku, FukuokaJapan
  2. 2.Department of Nuclear Engineering, Faculty of EngineeringKyushu UniversityHigashiku, FukuokaJapan

Personalised recommendations