Rapid laser fluorometric method for the determination of uranium in soil, ultrabasic rock, plant ash, coal fly ash and red mud samples

  • A. Premadas
  • P. K. Srivastava


A simple and rapid laser fluorometric determination of trace and ultra trace level of uranium in a wide variety of low uranium content materials like soil, basic and ultra basic rocks, plant ash, coal fly ash and red mud samples is described. Interference studies of some common major, minor and trace elements likely to be present in different, geological materials on uranium fluorescence are studied using different fluorescence enhancing reagents like sodium pyrophosphate, orthophosphoric acid, penta sodium tri-polyphosphate and sodium hexametaphosphate. The accurate determination of very low uranium content samples which are rich in iron, manganese and calcium, is possible only after the selective separation of uranium. Conditions suitable for the quantitative single step extraction of 25 ng to 20 μg uranium with tri-n-octylphosphine oxide and single step quantitative stripping with dilute neutral sodium pyrophosphate, which also acts as fluorescence enhancing reagent is studied. The aqueous strip is used for the direct laser fluorometric measurement without any further pretreatment. The procedure is applied for the determination of uranium in soil, basalt, plant ash, coal fly ash and red mud samples. The accuracy of the proposed method is checked by analyzing certain standard reference materials as well as synthetic sample with known quantity of uranium. The accuracy and reproducibility of the method are fairly good with RSD ranging from 3 to 5% depend upon the concentration of uranium.


Uranium Sodium Pyrophosphate Hexametaphosphate Sodium Hexametaphosphate Ultra Trace Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. Whitkop, Anal. Chem., 54 (1982) 2475.CrossRefGoogle Scholar
  2. 2.
    K. B. Hong, K. W. Jung, K. H. Jung, Talanta, 36 (1989) 1095.CrossRefGoogle Scholar
  3. 3.
    M. Eral, S. R. Kinaci, Spectrosc. Lett., 22 (1989) 855.Google Scholar
  4. 4.
    M. M. Aly, M. S. El. Alfy, F. Abdel, J. Radioanal. Nucl. Chem., 121 (1988) 45.Google Scholar
  5. 5.
    J. C. Veselsky, B. Kwiecinska, E. Wehrstein, O. Suschny, Analyst, 113 (1988) 451.CrossRefGoogle Scholar
  6. 6.
    J. B. Mchugh, Anal. Lett., 15 (1982) 1009.Google Scholar
  7. 7.
    J. H. Reedman, Techniques in Mineral Exploration, Applied Science Publishers Ltd., London, 1979, p. 138.Google Scholar
  8. 8.
    A. M. Asavin, Geochem. Intern., 32 (1995) 115.Google Scholar
  9. 9.
    F. D. Grimaldi, I. May, M. H. Fletcher, J. Titcomb, U.S. Geol. Survey Bull., 1006 (1954).Google Scholar
  10. 10.
    F. D. Snell, Photometric and Fluorometric Method For Analysis, Part II, Wiley Interscience Publication, New York, 1978, p. 1352.Google Scholar
  11. 11.
    I. G. Kochan, I. I. Shuktomova, J. Radioanal. Nucl. Chem., 188 (1994) 27.Google Scholar
  12. 12.
    S. Shawky, N. Ibrahim, A. Farouk, A. Ghods, Appl. Radiation Isotopes, 45 (1994) 1079.CrossRefGoogle Scholar
  13. 13.
    Y. S. Wang, C. H. Shen, J. K. Zhu, B. R. Bao, J. Radioanal. Nucl. Chem., 212 (1996) 101.Google Scholar
  14. 14.
    V. D. Pillai, V. M. Shinde, J. Radioanal. Nucl. Chem., 212 (1996) 23.Google Scholar
  15. 15.
    R. Saran, N. K. Baishya, J. Radioanal. Nucl. Chem., 196 (1995) 363.Google Scholar
  16. 16.
    J. A. Daoud, M. M. Zeid, H. F. Aly, Solv. Extr. Ion Exch., 15 (1997) 203.Google Scholar
  17. 17.
    J. Korkisch, Modern Method for the Separation of Rare Metal Ions, Pergamon Press, New York, 1769, p. 158.Google Scholar
  18. 18.
    A. Creigzook, C. H. Linde, P. E. Charles, Microchim. Acta, 11 (1981) 457.Google Scholar
  19. 19.
    A. T. Rhyswillians, J. N. Miller, Anal. Chim. Acta, 154 (1983) 341.Google Scholar
  20. 20.
    R. K. Malhotra, B. N. Tikko, Proc. 5th National Symp. on Analytical Spectroscopy Including Hyfenated Techniques, Indian Society of Analytical Scientists, Hyderabad, India, 1988, p. 71.Google Scholar
  21. 21.
    Analytical Technique in Uranium Exploration and Ore Processing, International Atomic Energy Agency Tech. Report Series No. 341. Vienna, 1992, p. 74.Google Scholar
  22. 22.
    J. C. Robbins, Field Techniques for Measurement of Uranium in Natural Waters, G.I.M. Bulletin, 61 (1978) 793.Google Scholar
  23. 23.
    S. Degetto, M. Faggin, A. Moresco, L. Baracca, Bull. Chem. Soc. Japan, 56 (1983) 904.Google Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • A. Premadas
    • 1
  • P. K. Srivastava
    • 1
  1. 1.Chemical LaboratoryAtomic Minerals Directorate for Exploration and ResearchNagpurIndia

Personalised recommendations