Characterization of an aluminum pillared montmorillonite with cation exchange properties

  • D. T. Karamanis
  • X. A. Aslanoglou
  • P. A. Assimakopoulos
  • N. H. Gangas


The methods of PIGE and XRF were used to determine the elemental composition and the structural formulae of a specially tailored PILC material during the steps of its preparation. The CEC, a crucial property for the characterization of a cation exchanger, was monitored through all stages of preparation. In addition, the charge carried by the pillars, a critical quantity of the pillaring process, was estimated. Exchange isotherms of strontium and cesium were performed through the use of radiotracers' exchange isotherms of137Cs and85Sr with typical ψ-ray spectroscopy. These isotherms were of the Langmuir type and PILCs adsorption capacity was determined. The latter property was compared with the CEC determined by the elemental analysis and was found equal to the amount of the exchangeable interlamellar sodium ions.


Aluminum Montmorillonite Adsorption Capacity Strontium Cation Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Schoonheydt, Introduction to Zeolite Science and Practice,H. Van Bekkum, E. M. Flanigen andJ. C. Jansen (Eds), Elsevier, Amsterdam, 1991, p. 201.Google Scholar
  2. 2.
    K. Suzuki, T. Mori, US Patent 5, 369,069 (1994) 8p.Google Scholar
  3. 3.
    D. T. Karamanis, X. A. Aslanoglou, P. A. Assimakopoulos, N. H. Gangas, A. A. Pakou, N. G. Papayanakos, Clays Clay Minerals, 45 (1997) 709.Google Scholar
  4. 4a.
    G. Deconninck, J. Radioanal. Chem. 12 (1972) 157.Google Scholar
  5. 4b.
    J. A. Cooper, Nucl. Instr. Meth., 106 (1973) 525.CrossRefGoogle Scholar
  6. 4c.
    D. Gihwala, M. Peisach, J. Radioanal. Chem., 70 (1982) 287.Google Scholar
  7. 4d.
    A. L. Hanson, K. W. Jones, Nucl. Instr. Meth., B9 (1985) 301.CrossRefGoogle Scholar
  8. 4e.
    H. Salah, B. Touchrift, Nucl. Instr. Meth., B129 (1997) 261.CrossRefGoogle Scholar
  9. 5.
    G. Deconninck, G. Demortier, J. Radioanal. Chem., 12 (1972) 189; 24 (1975) 437.Google Scholar
  10. 6.
    G. Demortier, F. Bodart, J. Radioanal Chem., 12 (1972) 209.Google Scholar
  11. 7.
    M. J. Kenny, J. R. Bird, E. Clayton, Nucl. Instr. Meth., 168 (1980) 115.CrossRefGoogle Scholar
  12. 8.
    A. Anttila, R. Hanninen, J. Raisanen, J. Radioanal. Chem., 62 (1981) 293.Google Scholar
  13. 9.
    A. Z. Kiss, E. Koltay, B. Nyako, I. S. Somorial, A. Anttila, J. Raisanen, J. Radional. Nucl. Chem., 89 (1985) 123.Google Scholar
  14. 10.
    A. Savidou, X. Aslanoglou, T. Paradellis, M. Pilakouta, Nucl. Instr. Meth., B (in press).Google Scholar
  15. 11.
    J. F. Ziegler, J. P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter, vol. 1, Pergamon Press, New York, 1980.Google Scholar
  16. 12.
    K. K. Nielson, Anal. Chem. 49 (1977) 641.CrossRefGoogle Scholar
  17. 13.
    T. O'Reilly, B. S. W. King, Adv. X-ray Anal., 30 (1987) 165.Google Scholar
  18. 14.
    I. Bogdanovic, S. Fazinic, S. Itskos, M. Jaksic, A. Karydas, V. Katselis, T. Paradellis, T. Tabic, O. Valkovic, V. Valkovic, NIM B99, 1995, p. 402.Google Scholar
  19. 15.
    A. Karydas, Private communication.Google Scholar
  20. 16.
    H. Van Olphen, Clay Colloid Chemistry, Interscience Publishers, New York, 1963, p. 248.Google Scholar
  21. 17.
    V. Sucha, V. Siranova, Clays Clay Minerals, 39 (1991) 556Google Scholar

Copyright information

© Akadémiai Kiadó 1999

Authors and Affiliations

  • D. T. Karamanis
    • 1
  • X. A. Aslanoglou
    • 1
  • P. A. Assimakopoulos
    • 1
  • N. H. Gangas
    • 1
  1. 1.Department of PhysicsThe University of IoanninaIoanninaGreece

Personalised recommendations