Abstract
An equation modelling the pressurep(x) =p(x, w) atx ∈D ⊂R d of an incompressible fluid in a heterogeneous, isotropic medium with a stochastic permeabilityk(x, w) ≥ 0 is the stochastic partial differential equation
wheref is the given source rate of the fluid, ◊ denotes Wick product.
We representk as the positive noise given by the Wick exponential of white noise, and we find an explicit formula for the (unique) solutionp(x, w), which is proved to belong to the space (S)−1 of generalized white noise distributions.
Similar content being viewed by others
References
S. Albeverio, Y. Kondratiev, and L. Streit: ‘Spaces of White Noise Distributions: Constructions, Descriptions, Applications II’, Manuscript 1993.
J. Ash and J. Potthoff: ‘Ito's Lemma without Non-Anticipatory Conditions’,Probab. Th. Rel. Fields 88 (1991), 17–46.
F. E. Benth: ‘Integrals in the Hida Distribution Space (S)*, in T. Lindstrøm, B. Øksendal, and A. S. Ustunel (eds.),Stochastic Analysis and Related Topics, Gordon & Breach, 1993, pp. 89–99.
R. A. Carmona and J. A. Yan: ‘A New Space of White Noise Distributions and Applications to SPDE's’. Manuscript 1994.
E. Dikow and U. Hornung: ‘A Random Boundary Value Problem Modelling Spatial Variability in Porous Media Flow,’ in M. F. Wheeler (ed),Numerical Simulation in Oil Recovery, IMA-Vol. II, Springer 1988, pp. 111–117.
I. M. Gelfand and N. Y. Vilenkin:Generalized Functions, Vol. 4: Applications of Harmonic Analysis, Academic Press 1964 (English translation).
H. Gjessing: A note on the Wick product, Preprint, University of Bergen, 1993.
J. Gjerde: Multidimensional noise, Cand. Scient Thesis, Univ. of Oslo, 1993.
H. Gjessing, H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, and T.-S. Zhang: ‘The Wick Product’, in H. Niemi, G. Högnäs, A. N. Shiryaev and A. Melnikov (eds),Frontiers in Pure and Applied Probability, Vol. 1. TVP Publishers, Moscow, 1993, pp. 29–67.
T. Hida:Brownian Motion, Springer-Verlag, 1980.
T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit:White Noise Analysis, Kluwer, 1993.
H. Holden, T. Lindstrøm, B. Øksendal, and J. Ubøe: ‘Discrete Wick Calculus and Stochastic Functional Equations’,Potential Analysis 1 (1992), 291–306.
H. Holden, T. Lindstrøm, B. Øksendal, and J. Ubøe: ‘Discrete Wick Products’, in T. Lindstrøm, B. Øksendal and A. S. Ustunel (eds.),Stochastic Analysis and Related Topics, Gordon & Breach, 1993, pp. 123–148.
E. Hille and R. S. Phillips: ‘Functional Analysis and Semigroups’,Amer. Math. Soc. Colloq. Publ. 31 (1957).
H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, and T.-S. Zhang: ‘Stochastic Boundary Value Problems: A White Noise Functional Approach’,Probab. Th. Rel. Fields 95 (1993), 391–419.
H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, and T.-S. Zhang: ‘The Burgers Equation with a Noisy Force’,Communications PDE 19 (1994), 119–141.
H. Holden, B. Øksendal, J. Ubøe, and T.-S. Zhang:Stochastic Partial Differential Equations (Forthcoming book).
T. Hida and J. Potthoff: ‘White Noise Analysis — an Overview’, in T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit (eds.),White Noise Analysis, World Scientific, 1990.
Y. Kondratiev, P. Leukert, and L. Streit: ‘Wick Calculus in Gaussian Analysis’, Manuscript 1994.
T. Lindstrøm, B. Øksendal, and J. Ubøe: ‘Stochastic Differential Equations Involving Positive Noise’, in M. Barlow and N. Bingham (eds.),Stochastic Analysis, Cambridge Univ. Press, 1991, pp. 261–303.
T. Lindstrøm, B. Øksendal, and J. Ubøe: ‘Wick Multiplication and Ito-Skorohod Stochastic Differential Equations’, in S. Albeverio et al. (eds.),Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, Cambridge Univ. Press, 1992, pp. 183–206.
T. Lindstrøm, B. Øksendal, and J. Ubøe: ‘Stochastic Modelling of Fluid Flow in Porous Media’, in S. Chen and J. Yong (eds.),Control Theory, Stochastic Analysis and Applications, World Scientific, 1991, pp. 156–172.
O. Martio and B. Øksendal: ‘Fluid Flow in a Medium Distorted by Quasiconformal Map Can Produce Fractal Boundaries’, to appear inEuropean J. Applied Mathematics.
B. Øksendal:Stochastic Differential Equations, Springer-Verlag, 1992 (Third edition).
T.-S. Zhang: ‘Characterizations of White Noise Test Functions and Hida Distributions;Stochastics 41 (1992), 71–87.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Holden, H., Lindstrøm, T., Øksendal, B. et al. The pressure equation for fluid flow in a stochastic medium. Potential Anal 4, 655–674 (1995). https://doi.org/10.1007/BF02345830
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02345830