Skip to main content
Log in

The pressure equation for fluid flow in a stochastic medium

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

An equation modelling the pressurep(x) =p(x, w) atxDR d of an incompressible fluid in a heterogeneous, isotropic medium with a stochastic permeabilityk(x, w) ≥ 0 is the stochastic partial differential equation

$$\left\{ {\begin{array}{*{20}c} {div(k(x,{\mathbf{ }}\omega )\diamondsuit \nabla p(x,\omega )){\mathbf{ }} = {\mathbf{ }}--f(x);{\mathbf{ }}x \in D} \\ {\begin{array}{*{20}c} {p(x,{\mathbf{ }}\omega ){\mathbf{ }} = {\mathbf{ }}0;} & {x \in \partial D} \\ \end{array} } \\ \end{array} } \right.$$

wheref is the given source rate of the fluid, ◊ denotes Wick product.

We representk as the positive noise given by the Wick exponential of white noise, and we find an explicit formula for the (unique) solutionp(x, w), which is proved to belong to the space (S)−1 of generalized white noise distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, Y. Kondratiev, and L. Streit: ‘Spaces of White Noise Distributions: Constructions, Descriptions, Applications II’, Manuscript 1993.

  2. J. Ash and J. Potthoff: ‘Ito's Lemma without Non-Anticipatory Conditions’,Probab. Th. Rel. Fields 88 (1991), 17–46.

    Google Scholar 

  3. F. E. Benth: ‘Integrals in the Hida Distribution Space (S)*, in T. Lindstrøm, B. Øksendal, and A. S. Ustunel (eds.),Stochastic Analysis and Related Topics, Gordon & Breach, 1993, pp. 89–99.

  4. R. A. Carmona and J. A. Yan: ‘A New Space of White Noise Distributions and Applications to SPDE's’. Manuscript 1994.

  5. E. Dikow and U. Hornung: ‘A Random Boundary Value Problem Modelling Spatial Variability in Porous Media Flow,’ in M. F. Wheeler (ed),Numerical Simulation in Oil Recovery, IMA-Vol. II, Springer 1988, pp. 111–117.

  6. I. M. Gelfand and N. Y. Vilenkin:Generalized Functions, Vol. 4: Applications of Harmonic Analysis, Academic Press 1964 (English translation).

  7. H. Gjessing: A note on the Wick product, Preprint, University of Bergen, 1993.

  8. J. Gjerde: Multidimensional noise, Cand. Scient Thesis, Univ. of Oslo, 1993.

  9. H. Gjessing, H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, and T.-S. Zhang: ‘The Wick Product’, in H. Niemi, G. Högnäs, A. N. Shiryaev and A. Melnikov (eds),Frontiers in Pure and Applied Probability, Vol. 1. TVP Publishers, Moscow, 1993, pp. 29–67.

    Google Scholar 

  10. T. Hida:Brownian Motion, Springer-Verlag, 1980.

  11. T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit:White Noise Analysis, Kluwer, 1993.

  12. H. Holden, T. Lindstrøm, B. Øksendal, and J. Ubøe: ‘Discrete Wick Calculus and Stochastic Functional Equations’,Potential Analysis 1 (1992), 291–306.

    Article  MathSciNet  Google Scholar 

  13. H. Holden, T. Lindstrøm, B. Øksendal, and J. Ubøe: ‘Discrete Wick Products’, in T. Lindstrøm, B. Øksendal and A. S. Ustunel (eds.),Stochastic Analysis and Related Topics, Gordon & Breach, 1993, pp. 123–148.

  14. E. Hille and R. S. Phillips: ‘Functional Analysis and Semigroups’,Amer. Math. Soc. Colloq. Publ. 31 (1957).

  15. H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, and T.-S. Zhang: ‘Stochastic Boundary Value Problems: A White Noise Functional Approach’,Probab. Th. Rel. Fields 95 (1993), 391–419.

    Article  Google Scholar 

  16. H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe, and T.-S. Zhang: ‘The Burgers Equation with a Noisy Force’,Communications PDE 19 (1994), 119–141.

    Google Scholar 

  17. H. Holden, B. Øksendal, J. Ubøe, and T.-S. Zhang:Stochastic Partial Differential Equations (Forthcoming book).

  18. T. Hida and J. Potthoff: ‘White Noise Analysis — an Overview’, in T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit (eds.),White Noise Analysis, World Scientific, 1990.

  19. Y. Kondratiev, P. Leukert, and L. Streit: ‘Wick Calculus in Gaussian Analysis’, Manuscript 1994.

  20. T. Lindstrøm, B. Øksendal, and J. Ubøe: ‘Stochastic Differential Equations Involving Positive Noise’, in M. Barlow and N. Bingham (eds.),Stochastic Analysis, Cambridge Univ. Press, 1991, pp. 261–303.

  21. T. Lindstrøm, B. Øksendal, and J. Ubøe: ‘Wick Multiplication and Ito-Skorohod Stochastic Differential Equations’, in S. Albeverio et al. (eds.),Ideas and Methods in Mathematical Analysis, Stochastics, and Applications, Cambridge Univ. Press, 1992, pp. 183–206.

  22. T. Lindstrøm, B. Øksendal, and J. Ubøe: ‘Stochastic Modelling of Fluid Flow in Porous Media’, in S. Chen and J. Yong (eds.),Control Theory, Stochastic Analysis and Applications, World Scientific, 1991, pp. 156–172.

  23. O. Martio and B. Øksendal: ‘Fluid Flow in a Medium Distorted by Quasiconformal Map Can Produce Fractal Boundaries’, to appear inEuropean J. Applied Mathematics.

  24. B. Øksendal:Stochastic Differential Equations, Springer-Verlag, 1992 (Third edition).

  25. T.-S. Zhang: ‘Characterizations of White Noise Test Functions and Hida Distributions;Stochastics 41 (1992), 71–87.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holden, H., Lindstrøm, T., Øksendal, B. et al. The pressure equation for fluid flow in a stochastic medium. Potential Anal 4, 655–674 (1995). https://doi.org/10.1007/BF02345830

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345830

Mathematics Subject Classifications (1991)

Key words

Navigation