Advertisement

Fractal analysis of rat brain activity after injury

  • S. Spasic
  • A. Kalauzi
  • G. Grbic
  • L. Martac
  • M. Culic
Article

Abstract

With application of the Higuchi algorithm, fractal dimension (FD) values of the electrocortical activity of the rat parietal cerebral and paravermal cerebellar cortex were calculated, before and after unilateral discrete injury of the left parietal cortex. Immediately following the first acute injury, in a group of six rats, a reversible increase in mean FD was found at the left (ipsilateral side to the injury) cerebral cortex, from 1.38 to 1.59, and at the left cerebellar cortex from 1.51 to 1.73. In addition, an indication of plastic changes after repeated (third) injury was found as an irreversible increase in mean FD: 1.54 on the left and 1.48 on the right side of parietal cortex.

Keywords

Fractal dimension Higuchis algorithm Brain injury Electrocortical signal Cerebral and cerebellar activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accardo, A., Affinito, M., Carrozzi, M., andBouquet, F. (1997): ‘Use of fractal dimension for the analysis of electroencephalographic time series’,Biol. Cybern.,77, pp. 339–350Google Scholar
  2. Babloyantz, A., andDestexhe, A. (1986): ‘Low-dimensional chaos in an instance of epilepsy’,Proc. Natl. Acad. Sci.,83, pp. 3513–3517Google Scholar
  3. Bergey, G. K., andFranaszczuk, P. J. (2001): ‘Epileptic seizures are characterized by changing signal complexity’,Clin. Neurophysiol.,112, pp. 241–249CrossRefGoogle Scholar
  4. Bezerianos, A., Tong, S., andThakor, N. (2003): ‘Time-dependent entropy estimation of EEG rhythm changes following brain ischemia’,Ann. Biomed. Eng.,31, pp. 221–232CrossRefGoogle Scholar
  5. Ciszewski, J., Klonowski, W., Stepien, R., Jernajczyk, W., Karlinski, A., andNiedzielska, K. (1999): ‘Application of chaos theory for EEG-signal analysis in patients with seasonal affective disorder’,Med. Biol. Eng. Comput.,37, pp. 359–360Google Scholar
  6. Culic, M., Martac-Blanusa, Lj., Grbic, G., Spasic, S., Jankovic, B., andKalauzi., A. (2005): ‘Spectral changes of cerebellar activity after acute brain injury in anesthetized rats’,Acta Neurobiol. Exp.,65 Google Scholar
  7. Esteller, R., Vachtsevanos, G., Echauz, J., andLitt, B. (199a): ‘A comparison of fractal dimension algorithms using synthetic and experimental data’, Proc. IEEE Int. Symp. Circuits and System, Adaptive Digital Signal Processing, Orlando, Fl,III, pp. 199–202Google Scholar
  8. Esteller, R., Vachtsevanos, G., Eschauz, J. Henry, T., Pennel, P., Epstein, C., Bakay, R., Bowen, C., andLitt, B. (1999b): ‘Fractal dimension characterizes seizure onset in epileptic patients’, Proc. IEEE Int. Conf. on Acoustics, Speech & Signal Processing, Phoenix, Az, pp. 2343–2346Google Scholar
  9. Esteller, R. (2000): ‘Detection and prediction of seizures in epileptic EEG records’, PhD thesis, Georgia Institute of Technology, Atlanta, GA, USAGoogle Scholar
  10. Hernandez Caceres, L. J., Sibat, F. S., Hong, R., Garcia, L., Sautie, M., andNamugova, V. (2004): ‘Towards the estimation of fractal dimension of heart rate variability data’,El. J. Biomed.,2, pp. 4–15Google Scholar
  11. Higuchi, T. (1988): ‘Approach to an irregular time series on the basis of the fractal theory’,Physics D,31, pp. 277–283MATHMathSciNetGoogle Scholar
  12. Jagadisha Gangadhar, B. N., Janakiramaiah, K., andRamakrishnan, A. G. (2003): ‘Post-seizure EEG fractal dimension and spectral power predict antidepressant response to unilateral ECT’,Ann. Gen. Hosp. Psychiatry,2, p. S63Google Scholar
  13. Kalauzi, A., Spasic, S., Culic, M., Grbic, G., andMartac, Lj. (2004): ‘Correlation between fractal dimension and power spectra after unilateral cerebral injury in rat’,FENS Abtrs,2, A. 199.9Google Scholar
  14. King, C. C. (1991): ‘Fractal and chaotic dynamics in nervous systems’,Prog. Neurobio.,36, pp. 279–308Google Scholar
  15. Klonowski, W., Olejaczyk, E., Stepien, R., andScelenberger, W. (2003): ‘New methods of nonlinear and symbolic dynamics in sleep EEG-signal analysis’, in:Feng, D. D., andCarson, E. R. (Eds): ‘Modelling and control in biomedical systems’, Proc. 5th IFAC Symposium, Melbourne, Australia (Elsevier, 2003), pp. 241–244Google Scholar
  16. Spasic, S., Kalauzi, A., Culic, M., Grbic, G., andMartac, Lj. (2004a): ‘The effect of cerebral injury on fractal dimension of ECoG in rat’,FENS Abtrs,2, A. 199.19Google Scholar
  17. Spasic, S., Kalauzi, A., Culic, M., Grbic, G., andMartac, Lj. (2004b): ‘Estimation of parameterk in fractal analysis of rat brain activity’, 22nd Int. Symp. on Biophysics, Sv. Stefan & Belgrade, October 9–13,1, p. 8Google Scholar
  18. Tapanainen, J. M., Thomsen, P. E., Kober, L., Torp-Pedersen, C., Makikallio, T. H., Still, A. M., Lindgren, K. S., andHuikuri, H. V. (2002): ‘Fractal analysis of heart rate variability and mortality after an acute myocardial infarction’,Am. J. Cardiol.,90, pp. 347–352CrossRefGoogle Scholar

Copyright information

© IFMBE 2005

Authors and Affiliations

  • S. Spasic
    • 1
  • A. Kalauzi
    • 1
  • G. Grbic
    • 2
  • L. Martac
    • 2
  • M. Culic
    • 2
  1. 1.Center for Multidisciplinary StudiesUniversity of BelgradeBelgradeSerbia and Montenegro
  2. 2.Institute for Biological Research ‘S.Stankovic’University of BelgradeBelgradeSerbia and Montenegro

Personalised recommendations