Non-invasive imaging and characterisation of human foot by multi-probe laser reflectometry and Monte Carlo simulation

Article

Abstract

Diffusely backscattered signals from the human foot sole tissues of normal subjects (n=5) were obtained by multiprobe laser reflectometry. The colour-coded images were constructed from data on the variation of normalised backscattered intensity (NBI), after interpolation and median filtering. The maximum and minimum NBI values at the arch and heel regions of the foot sole, respectively, were observed. The mean NBI at the arch region was significantly higher compared with that at other regions (p<0.0001). The images of optical parameters of normal tissues show point-to-point variation, attributed to their compositional changes. The pattern of variation of the NBI of a diabetic subject (glucose level 170 mg dl−1) was associated with highly significant variation at the lateral sides of the fore- and middle-foot compared with that of normal subjects.

Keywords

Multiprobe laser reflectometry Human foot Optical parameters Imaging Monte Carlo simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, N. S., Srinivasan, R., Kumar, D., Jayavanth, S., andSingh, M. (2003a): ‘Optical characterization of surface tissues of human body by multi-probe laser reflectometry’ inBehari, J. (Ed.): ‘Microwave measurement techniques and applications’ (Anamaya Publishers, New Delhi, 2003), pp. 119–127.Google Scholar
  2. Anand, N. S., Kumar, D., Srinivasan, R., andSingh, M. (2003b): ‘Laser reflectance imaging of human forearms and their tissue-equivalent phantoms’,Med. Biol. Eng. Comput.,41, pp. 28–32Google Scholar
  3. Chacko, S., andSingh, M. (1999): ‘Multi-layer imaging of human organs by measurement of laser backscattered radiation’,Med. Biol. Eng. Comput.,37, pp. 278–284.Google Scholar
  4. Chandawarkar, R. Y. (1990): ‘Diabetic foot’,Science Today,7, pp. 50–52Google Scholar
  5. Chaurasia, B. D. (1991): ‘Human anatomy’ (CBS Publishers, New Delhi, 1991), pp. 102–111Google Scholar
  6. Cheong, W. F., Prahl, S. A., andWelch, A. J. (1990): ‘A review of the optical properties of biological tissues’,IEEE J. Quant. Electr.,26, pp. 2166–2184Google Scholar
  7. Cui, W., andOstrander, L. E. (1992): ‘The relationship of surface reflectance measurements to optical properties of layered biological media’,IEEE Trans. Biomed. Eng.,39, pp. 194–201CrossRefGoogle Scholar
  8. Flock, S. T., Wilson, B. C., andPatterson, M. S. (1987): ‘Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm’,Med. Phys.,14, pp. 835–841Google Scholar
  9. Ghosh, N., Mohanty, S. K., Majumdar, S. K., andGupta, P. K. (2001): ‘Measurement of optical transport properties of normal and malignant human breast tissue’,Appl. Opt.,40, pp. 176–184Google Scholar
  10. Goldman, L. (1981): ‘The biomedical laser technology and clinical applications’ (Springer Verlag, Berlin, 1981)Google Scholar
  11. Hebden, J. C. (1993): ‘Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium’,Appl. Opt.,32, pp. 3837–3841Google Scholar
  12. Hielscher, H., Liu, H., Chance, B., Tittel, F. K., andJacques, S. L. (1996): ‘Time resolved photon emission from layered turbid media’,Appl. Opt.,35, pp. 719–728Google Scholar
  13. Hillman, E. M. C., Hebden, J. C., Schweiger, M., Dehghani, H., Schmidt, S. C. H., Delpy, D. T., andArridge, A. R. (2001): ‘Time resolved optical tomography of the human forearm’,Phys. Med. Biol.,46, pp. 1117–1129CrossRefGoogle Scholar
  14. Jacques, S. L. (1989): ‘Time-resolved reflectance spectroscopy in turbid tissues’,IEEE. Trans. Biomed. Eng.,36, pp. 1155–1161CrossRefGoogle Scholar
  15. Jain, A. K. (1989): ‘Fundamentals of digital image processing’ (Prentice Hall, Engelwood Cliffs, NJ, 1989)Google Scholar
  16. Jiang, H., Paulsen, K. D., Osterberg, U. L., and Patterson, M. S. (1997): ‘Frequency-domain optical image reconstruction in turbid media: an experimental study of single target detectability’,Appl. Opt.,36, pp. 52–63Google Scholar
  17. Kienle, A., Patterson, M. S., Dögnitz, N., Bays, R., Wagnières, G., andvan den Bergh, G. (1998): ‘Noninvasive determination of the optical properties of two-layered turbid media’,Appl. Opt.,37, pp. 779–791Google Scholar
  18. Kumar, D., Chacko, S., andSingh, M. (1999): ‘Monte Carlo simulation of photon scattering in biological tissue models’,Ind. J. Biochem. Biophys.,36, pp. 330–336Google Scholar
  19. Kumar, D., andSingh, M. (2003a): ‘Non-invasive imaging of optical parameters of biological tissues’,Med. Biol. Eng. Comput.,41, pp. 310–316Google Scholar
  20. Kumar, D., andSingh, M. (2003b): ‘Characterization and imaging of compositional variation in biological tissues’,IEEE Trans. Biomed. Eng.,50, pp. 1012–1019.CrossRefGoogle Scholar
  21. London, R. A., Glinsky, M. E., Zimmerman, G. B., Bailey, D. S., Eder, D. C., andJacques, S. L. (1997): ‘Laser-tissue interaction modeling with LATIS’,Appl. Opt.,36, pp. 9068–9074Google Scholar
  22. Meglinsky, I. V., andMatcher, S. J. (2001): ‘Modeling the sampling volume for skin blood oxygenation measurements’.Med. Biol. Eng. Comput.,39, pp. 44–50CrossRefGoogle Scholar
  23. Mitic, G., Kolzer, J., Otto, J., Erich, P., Solkner, G., andZinth, W. (1994): ‘Time gated transillumination of biological tissues and phantoms’,Appl. Opt.,33, pp. 6699–6709Google Scholar
  24. Nossal, R., Kiefer, J., Weiss, G. H., Bonner, R., Taitelbaum, H., andHavlin, S. (1988): ‘Photon migration in layered media’,Appl. Opt.,27, 3382–3391Google Scholar
  25. O'Leary, M. A., Boas, D. A., Chance, B., andYodh, A. G. (1995): ‘Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography’,Opt. Lett.,20, pp. 426–428Google Scholar
  26. Odland, G. F. (1991): ‘Structure of skin’, inGoldsmith, A. (Ed.) ‘Physiology, biochemistry and molecular biology of skin’ (Oxford University Press, Oxford, 1991), pp. 3–62Google Scholar
  27. Pickering, J. W., Prahl, S. P., van Wieringen, N., Beck, J. F., Storenborg, H. J. C. M., andvan Gemert, M. J. C. (1993): ‘Double integration sphere system for monitoring of optical properties of tissues’,Appl. Opt.,32, pp. 399–410Google Scholar
  28. Schmitt, J. M., Zhou, G. X., Walker, E. C., andWall, R. T. (1990): ‘Multi-layer model of photon diffusion in skin’,J. Opt. Soc. Am.,7, pp. 2141–2153Google Scholar
  29. Shanthi, S., andSingh, M. (1996): ‘Laser reflectance imaging of mammalian organs under in vitro conditions’,Innov. Tech. Biol. Med.,17, pp. 443–451Google Scholar
  30. Shanthi, S., andSingh, M. (1997): ‘Laser reflectance imaging of human organs and comparison with perfusion images’,Med. Biol. Eng. Comput.,35, pp. 253–258Google Scholar
  31. Singh, M., andChacko, S. (1997): ‘Monte Carlo simulation of laser light scattering in mammalian organs’,Curr. Sci.,73, pp. 1015–1019Google Scholar
  32. Srinivasan, R., andSingh, M. (2002): ‘Development of biological tissue-equivalent phantoms for optical imaging’,Ind. J. Exptl. Biol.,40, pp. 536–540Google Scholar
  33. Thomas, V. J., Patil, K. M., Radhakrishnan, S., Narayanamurthy, V. B., andParivalavan, R. (2003): ‘The role of skin hardness, thickness and sensory loss on standing foot power in the development of plantar ulcers in patients with diabetes mellitus—a preliminary study’,Lower Extrem. Wounds,2, pp. 132–139Google Scholar
  34. Tuchin, V. V. (1997): ‘Light scattering study of tissues’,Physics-Uspekhi.,40, pp. 495–515CrossRefGoogle Scholar
  35. van Gemert, M. J. C., andWelch, A. J. (1989): ‘Clinical use of laser tissue interaction’,IEEE Eng. Med. Biol.,8, pp. 10–13Google Scholar
  36. van Staveren, H. J., Moes, C. J. M., van Marle, J., Prahl, S. A., andvan Gemert, M. J. C. (1991): ‘Light scattering in intralipid-10% in the wavelength range of 400–1100 nm’,Appl. Opt.,30, pp. 4507–4514Google Scholar
  37. Wilson, B. C. (1995): ‘Measurement of tissue optical properties’, inWelch, A. J., andvan Gemert, M. J. C. (Eds): ‘Optical—thermal response of laser-irradiated tissue’ (Plenum Press, New York, 1995), pp. 233–303Google Scholar
  38. Yoon, G., Welch, A. J., Motamedi, M., andvan Gemert, M. C. J. (1987): ‘Light distribution model for laser irradiated tissue’,IEEE J. Quant. Electr.,23, pp. 1721–1733Google Scholar

Copyright information

© IFMBE 2005

Authors and Affiliations

  1. 1.Biomedical Engineering DivisionIndian Institute of TechnologyMadrasIndia
  2. 2.Centre for Biomedical EngineeringSGN Educational FoundationVelacheryIndia

Personalised recommendations